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Abstract 

Constructivist learning theory has suggested that students can only obtain conceptual 
understanding of a knowledge domain by actively trying to integrate new concepts and ideas into their 
existing knowledge framework.  In practice, this means that students will have to explain novel ideas, 
concepts, and principles to themselves.  Various methods have been developed that aim to stimulate the 
student to self-explain.  In this study, two such methods were contrasted in a randomized experiment. In 
one condition students were stimulated to self-explain in an undirected way.  In the other the stimulus to 
self-explain was directed.  We examined whether the directive method leads to a greater level of 
conceptual understanding.  To assess conceptual understanding we asked students to construct a concept 
map and to take a 10-item multiple-choice test.  The results are somewhat contradictory but do suggest 
that the directive method may be of value.  We discuss the possibility of integrating that method in the 
statistics curriculum. 

Introduction 

At the most basic level, statistics is comprised of a wealth of highly abstract concepts.  In any 
elementary statistics course the student is immediately confronted with a vast collection of concepts, 
ideas, and principles that often have a mathematical connotation (like distribution, standard deviation and 
mean) and which often lack a clear referent in the experiential world of the student (e.g. multimodality, 
skewness, kurtosis).  Moreover, statistical concepts are sometimes ambiguous, like the meaning of  
“mean” (see Hawkins, Jolliffe and Glickman, 1992) and counterintuitive (see, for example, the classical 
studies by Kahneman, Slovic and Tversky, 1982) on the various misconceptions regarding stochastics).  
Add to this the fact that many students who take statistics classes have little mathematical background and 
do so out of curricular demands, and it is not surprising that statistics is often approached with dislike and 
apprehension (see Gall and Ginsburg, 1990).  Often, such a negative attitude results in a postponement of 
studying the material until one or two weeks before the exam, when many students resort to rote 
learning of concepts and ideas. 
 But rote learning of the important concepts and principles that make up the body of any statistical 
theory does not usually lead to the formation of an integrated knowledge network (i.e., to conceptual or 
connected understanding of statistics).  It has frequently been found that a distinction should be made 
between knowledge of individual concepts of a knowledge domain and knowledge of the 
interrelationships between these concepts.  The latter, more integrated type of knowledge, is variously 
referred to as connected or conceptual understanding (Huberty, Dresden and Bak, 1993; Kelly, Finbarr 
and Whittaker, 1997; Schau and Mattern, 1997), meaningful knowledge (Hiebert and LeFevre, 1986), or 
principled knowledge (Lampert, 1986).  Within cognitive psychology, such integrated knowledge 
networks are often referred to as cognitive schemata – although this term actually has a broader meaning 
than conceptual understanding (Marshall, 1995).  
 Constructivist learning theory assumes that integrated knowledge structures cannot be simply 
transferred from teacher to student but have to be actively constructed by the learners on the basis of the 
learning material with which they are presented (e.g. Von Glasenfeld, 1987; Novak, 1998; Mintzes and 
Wandersee, 1998).  In this process, the learners are not a blank slate filing appropriate knowledge, but 
they bring along a range of intuitions and conceptions with which they approach the study material.  From 
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a scientific point of view, such preconceptions are often misconceptions.  However, many of these 
misconceptions are not senseless ideas but rather are intuitively plausible constructions that have been 
shown to be valid on previous occasions.  Such ideas become misconceptions because they are used 
beyond their natural limits of applicability (Smith, di Sessa, and Roschelle, 1993; Mevarech, 1983).  
When confronted with the over-generalized use of their preconceptions, learners may adopt scientifically 
more correct conceptions instead.  
 This perspective on learning makes clear that students will not be able to construct an integrated 
knowledge network by passive absorption of concepts and ideas that are presented in a lecture or outlined 
in a book.  Rather, they need to reflect on what is presented to them, to experience that some of their 
intuitions are wrong and to actively try to comprehend just why they are wrong and how alternative 
conceptions will prove to be right.  

The Importance of Self-Explanation 

 In other words, a key activity in learning is self-explanation.  There is now a large body of 
research on the benefits of self-explanation and on ways to stimulate this activity. Chi, Bassok, Lewis, 
Reimann and Glaser (1989) conducted a pioneering study on self-explanation .  They trained eight 
students in mechanics by providing them with a standard physics text.  After this basic training, all eight 
students were given a number of worked-out problems on mechanics.  They were asked to think aloud as 
they studied these worked-out examples.  Subsequently, the researchers administered a posttest on 
mechanics problems.  On the basis of this posttest, the researchers considered four students to be 
successful problem solvers and four students as poor ones.  Subsequent analysis of the think aloud 
protocols revealed that the successful students had generated a far greater amount of self-explanation than 
the unsuccessful students.   
 In a subsequent study, Chi, DeLeeuw, Chiu and LaVancher (1994) tried to demonstrate a positive 
self-explanation effect by conducting an experiment.  Twenty-four students were given a biology text on 
the human circulatory system.  Of these, 14 students received a prompt to self-explain after reading each 
individual line of the text.  The control group, consisting of the remaining 10 students, simply received 
the instruction to read the same text twice.  Administration of a posttest showed that the self-explanation 
group had made greater progress than the controls and especially did better on questions that required 
knowledge inferences and use of common sense knowledge.  Analysis of the content of the self-
explanations showed that 30 percent of these were produced by integrating new information with prior 
knowledge by the student, and 41 percent of the self-explanations constituted the integration of new 
information with prior sentences.  The better explainers, moreover, frequently integrated new information 
with preceding information pertaining to a slightly different topic in the same text (Chi et al., 1994).  
 Since the initial work of Chi et al. (1989), the beneficial effects of self-explanation have been 
demonstrated in various studies (see e.g. Pirolli and Recker, 1994; Ferguson-Hessler and de Jong, 1990); 
Webb, 1989).  In view of the importance of self-explanation, attempts have been made to directly 
stimulate students to self-explain.  In one experiment, Renkl (1995) had students study worked-out 
examples and led them to expect that they would later have to explain similar problems to a fellow 
student.  He predicted this teaching expectancy to result in a greater amount of self-explanations, but, in 
fact, the effect of this teaching expectancy was negative rather than positive: the induced stress led to 
reduced motivation.  
 Stark (1998, quoted in Renkl, 1999) tried a different approach.  He presented worked-out 
examples in which part of the solution was replaced by question marks.  This way, it was believed, the 
student would be forced to self-explain.  Indeed the number of self-explanations strongly increased in 
comparison to a control group, but the incomplete solutions introduced problematic gaps of 
comprehension and also self-explanations that were clearly incorrect but provided the student with an 
illusion of understanding.  
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 A different technique for stimulating students to self-explain involves asking them to construct a 
concept map on the basis of a collection of concepts.  One form of a concept map is a graph depicting 
ovals that are connected by arrows.  The ovals contain concepts (such as “mean” and “random variable”) 
connected by arrows that are accompanied by a short comment describing the relationship between two 
concepts (e.g. “is a” could be a comment next to the arrow connecting “mean” with “sample statistic.”’ 
By drawing a concept map, a student externalizes the links and relationships he or she perceives between 
a number of concepts. Bulmer (2002), Knypstra (1999) and by Schau and Mattern (1997) provide 
examples in which concept maps have been used for instructional purposes within statistics.  Schau and 
Mattern presented students with a concept map in which a number of the ovals were empty, together with 
a list containing concepts from which the students had to select the relevant ones to be placed in the ovals.  
Schau and Mattern discussed this use of the concept map mainly as a procedure to assess connected 
understanding, but it is clear that the assessment method they used has the effect of stimulating students 
to self-explain.  

Directing the Stimulus to Self-Explain 

Most of the methods designed to stimulate self-explanation have in common that the stimulus to 
self-explain is undirected.  Creating a concept map will have the student think about important 
connections between concepts, as will presenting with worked-out examples.  However, different students 
may focus on entirely different connections or principles when working on concept maps or worked-out 
examples.  
 Broers (2002) has outlined a method to direct students in their self-explanation activity.  
Basically, this method is comprised of several steps.  First, the instructor has to deconstruct the learning 
material of a given knowledge domain into a finite number of elementary propositions, which, together, 
cover all the relevant concepts and principles. For example, when presenting material on the theory 
underlying hypothesis testing, relevant propositions will state what we mean by a null hypothesis, by a 
significance level, by a sampling distribution, a test statistic, etc.  Second, the learner is presented with a 
list of study questions that aim to have the student identify all the relevant propositions.  For example, a 
question might read “What do we mean by the null hypothesis?” Another will ask what a test statistic is, 
and yet another question will ask about the sampling distribution.  Each relevant proposition is translated 
into a study question.  Third, the instructor decides which particular connections between concepts the 
student should learn.  Finally, the instructor constructs a number of true-false questions that can only be 
properly answered by a student who comprehends the connections between the relevant concepts.  The 
true-false statements are accompanied by a subset of study questions, all pertaining to the concepts the 
instructor wishes the student to relate.  The student is then instructed to create an argument out of the 
answers to these study questions that logically shows the statement to be either true or false.  
 We decided to compare the efficacy of this directive method to foster self-explanation with a 
more traditional, undirected approach.  The guiding question of our research was: Is there evidence that 
the directive method gives rise to a greater amount of connected understanding than the undirective 
method?  In addition, we focussed on an explorative issue.  Researchers often advocate that concept maps 
are appropriate tools for assessing conceptual understanding.  However, others have raised critical 
questions regarding reliability and validity (see Ruiz-Primo and Shavelson, 1996).  We wanted to 
compare the use of concept maps with a more conventional test for assessing conceptual understanding, to 
see if the former would be manifestly superior in detecting differences in conceptual understanding 
amongst students. 
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Method 

Participants 

Twenty-five psychology students volunteered to participate in the experiment.  All volunteers 
were second-year students who had repeatedly failed to pass the elementary statistics exam and who were 
motivated to participate by the advertisement on the experiment, which had stated that the research 
project would provide students with extra training for their final re-exam. 

 
Design 

Participants were randomly allocated to one out of two groups, respectively called the undirected 
self-explanation group and the directed self-explanation group.  We established that the students in the 
two groups did not know each other and thus were not likely to communicate their different experiences.  
There were six meetings, three of which were primarily meant as training sessions to acquaint students 
with the procedures and the material.  These meetings focused on concepts related to estimation and will 
not be elaborated on in this paper.  The final three meetings were treatment-related and, as such, were 
organized separately for groups 1 and 2.  In the first of these meetings, students in both groups were 
provided with a questionnaire containing 18 questions, each question pertaining to an individual concept.  
Some examples of these questions are listed in Box 1. 

 
1. What do we mean by the “null hypothesis”? 
2. What is meant by a test statistic? 
3. The value of the test statistic is reported with a corresponding p-value.  
    What is meant by this p-value? 
4. Why is this p-value a conditional probability? 
5. How can we increase the power of a statistical test? 
6. What do we mean by the sampling distribution of the mean? 
Box 1. Some Examples of Study Questions on Individual Concepts 

Subsequently, students in both groups were asked to construct a concept map illustrating the 
interrelationships between these 18 concepts.  The 18 concepts involved are listed in Box 2. 

 
Null Hypothesis Test Statistic Parameter(s) Power z 
Alternative Hypothesis Critical Value Sample Size P-value sx 
Sampling Distribution  Type I Error Sample t  
Significance Level Type II Error Decision σx  
Box 2. The 18 Concepts Presented to Students 

 
At the end of this first meeting, students were provided with homework.  For both groups, this 

consisted of filling out the same questionnaire again, this time not by heart but after consulting the 
relevant learning material (i.e., literature and lecture notes).  The literature consisted of the 4th edition of 
Moore and McCabe’s Introduction to the Practice of Statistics (2003). 
 At the second meeting, all students handed over their completed questionnaires, and we found 
that each individual had now more or less correctly answered each of the study questions.  At this second 
meeting, new homework was provided.  The undirected group was provided with the instruction to 
actively think about possible interrelationships between the 18 concepts.  They were to do this by 
constructing a new concept map at home.  The students had already charted the relevant propositions in 
the study material concerning hypothesis testing, so they had acquired knowledge about the 18 concepts 
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in isolation.  Now they were asked to study the material in order to comprehend the interrelations amongst 
these concepts.  This stimulus to self-explain was undirected because students could choose to focus on 
some relations and to ignore others.  Which particular relations they focussed on and which relations they 
ignored was entirely a matter of their personal consideration.  
 The directed group received 10 true-false statements.  Each of these 10 statements was 
accompanied by a subset (about six) of the study questions the students had answered during the previous 
homework assignment.  The 18 study questions, it should be remembered, pertained to each of the 18 
individual concepts.  For each of these 10 true-false statements, the students were instructed to construct 
an argument in which they made use of the answers to the subset of questions that accompanied the 
statements.  This way, they were guided towards self-explanation activity pertaining to the relationships 
among the pre-selected subset of concepts.  They knew the meaning of the individual concepts.  Now they 
had to use their sense of logic to ponder the question of how this set of concepts together determined the 
validity of the statement that was given.  An example of a true-false statement, together with the 
accompanying set of study questions, is given in Box 3.  
 
Statement: If we make a Type II error, this implies that the probability distribution we used to determine 
the p-value of our test statistic was not an adequate model of the empirical reality 
 
Instruction: Construct an argument that shows the above statement to be either true or false, and use the 
answers to each of the following questions in your argument: 
 
Study questions to be used:  

- What is a test statistic? 
- What conditional probability distribution are we working with, when testing a null hypothesis? 
- The value of the test statistic is reported with a corresponding p-value. What is meant by this p-

value? 
- Why is this p-value a conditional probability? 
- What is a significance level? 
- What is a Type II error?  

Box 3. Example of a True/False Question (with Accompanying Study Questions) 

At the final meeting, students of both groups were once more asked to construct a concept map, 
showing the interrelationships among the 18 concepts.  In addition, they were given a 10-item multiple 
choice test in which they had to apply conceptual or connected understanding in order to identify the 
correct alternatives. 

Material 

 Concept Maps 

During the first meeting, participants were provided with an example of a concept map on 
meaningful learning (taken from Novak and Gowin, 1984), with some additional oral instruction on how 
to construct such a map.  Next, they were presented with a list of the 18 concepts that were presented in 
Box 2.  They were asked to construct a concept map using each of these 18 concepts that showed the 
interrelationships among the concepts by drawing an appropriate arrow and writing a small comment 
alongside it.  During the final session, students were again provided with the list of 18 concepts and asked 
to construct a new concept map depicting as many interrelationships as they could think of.  Appendix 1 
gives an example of an incomplete and partially incorrect concept map that was constructed by a student 
during the first session.  We scored the concept map in two ways:  first, by counting the number of correct 
relationships specified in the map (i.e., by counting the number of appropriate arrows with correct 
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comments); second, by comparing the constructed map with an expert map (constructed by the principal 
author) and counting the number of correct comments on  arrows that corresponded with the arrows in the 
expert map. 

 
Test for Conceptual Understanding 

Next, all participants were presented with 10 multiple choice items pertaining to hypothesis 
testing.  The items could not be answered on the basis of isolated knowledge of concepts but required 
connected understanding to do so.  A correct response was scored with 1, an incorrect response with 0.  
The sumscore on this 10-item test was taken as an alternative measure of conceptual understanding. Some 
examples of items that were used are shown in Appendix 2. 

Results and Discussion 

The two methods of scoring the quality of concept maps yielded rather similar scores.  For the 
concept maps created on the final session, the mean score obtained by counting the number of correct and 
appropriately commented arrows was 11.3 (s = 3.9), while the mean score determined by the number of 
corresponding arrows with the expert map was 8.4 (s = 3.4).  The correlation between these two 
measurements was equal to 0.80.  A possible reason for this high correlation is that the expert who 
constructed the concept map also judged whether a relationship was meaningful or not. In an effort to 
obtain a measure with higher reliability, we decided to take the average of the scores.  Using these 
averaged scores, we found the means and standard deviations for the two groups and for the two sessions, 
reported in Table 1. 

 
Table 1.  
Means (and Standard Deviations) of Scores on Concept Map Activities 

Group 
 Undirected 

(n = 12) 
Directed 
(n = 13) 

All students  
(N = 25) 

First 7.38 (3.3) 8.31 (3.3) 7.86 (3.3) 

 
 
 

Session 
Last 9.21 (3.4) 10.5 (3.5) 9.88 (3.5) 

 
As would have been expected, a paired analysis of mean scores on the dependent variable 

indicated a significant improvement between the quality of the concept maps constructed at the first and 
those constructed at the second (or last) meetings (t(24) = -3.34, p < .01).  Looking only at the results for 
the concept maps constructed at the last session, an independent samples t-test showed that the directed 
group did not significantly outperform the undirected group, although the former group did specify 
slightly more relationships than the latter (t(23) = -.93, p = .36).  Our second dependent variable was the 
score on the multiple choice test for conceptual understanding.  This test was only administered during 
the final session.  Table 2 shows means and standard deviations for both groups on this variable.  Both the 
undirected and the directed groups have a relatively low mean score, probably reflecting the fact that we 
were working with a selective group of students that had a record of poor performances on previous 
statistics exams.  The means differ significantly from each other at the 5% level (t(23) = -2.42, p < .05). 

 
Table 2 
Descriptive Statistics on the Test for Conceptual Understanding 

 Minimum Maximum Mean Standard Deviation 
Undirected group (n=12) 2 6 4 1.13 

Directed group (n=13) 2 8 5.4 1.66 
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 The fact that the concept map suggests that the two groups do not differ in conceptual 
understanding, whereas the multiple choice test suggests that they do constitutes a contradictory result 
that requires critical consideration.  A possible explanation may be that the sort of reasoning required by 
the multiple choice test corresponds directly with the training that the directed group had received.  
Considering a multiple choice item, the student has to infer a set of relevant propositions on concepts that 
bear on the statement given and by logical deduction conclude that one of the provided alternatives is 
correct, whereas the three others are false.  It is this process of reasoning that was explicitly prescribed in 
the directed condition of our experiment.  Perhaps, therefore, the two groups do not actually differ in their 
level of connected understanding but only in their familiarity with using logical reasoning on true-false 
items.  
 On the other hand, previous research does not establish whether multiple choice tests and concept 
maps measure the same aspects of knowledge. Several studies showed consistent correlations between 
these two types of measurements, while others failed to find such correlations (see the overview by Ruiz-
Primo and Shavelson, 1996). The results of this study could be taken to suggest that multiple choice tests 
do tap a different aspect of knowledge than concept maps do.  Maybe the concept maps were too easy, in 
the sense that some of the relationships could just be learned without real understanding of the subject 
matter.  In this way, the understanding of the undirected group may have been overestimated.  In Ruiz-
Primo and Shavelson (1996), a study of Baxter, Glaser and Raghavan (1993) is described, which resulted 
in this conclusion.  
 Still another factor may have obscured differences in conceptual understanding between our 
groups.  In our experiment, we instructed students to create a concept map on the basis of 18 concepts.  
This approach may have facilitated the task and thereby hidden the effect of the directed training.  Even 
though the training concerned the learning of connections between concepts and not the concepts 
themselves, learning of connections can improve knowledge of a concept itself.  Conceivably the students 
in the undirected group might have produced less concepts (and links between them) than the students 
who received the directed training if they had come up with the concepts themselves (see Ruiz-Primo and 
Shavelson, 1996). A further critical point concerns the reliability of the concept map scores.  Few studies 
have examined this aspect, but the ones that did, showed low reliability of scores (Ruiz-Primo and 
Shavelson, 1996). 

A final factor that may account for the lack of difference in performance between the two groups 
on the concept maps is the following: Our instruction for drawing a concept map meant that students 
started with whichever of the 18 concepts they cared to choose.  This meant that some students started 
with concepts like “hypothesis”, “'parameter” and “test statistic”, which would therefore appear 
somewhere in the center of their paper, with other concepts like “Type I error”, “power” and “sample” 
appearing somewhere in the periphery of the map.  Conceivably, students are more likely to link concepts 
that appear spatially close to each other than concepts that appear spatially remote from each other.  So in 
the above example, links between “hypothesis”, “parameter” and “test statistic” would then be more 
likely than links between “hypothesis”, “test statistic”, “sample” and “power”, although the student may 
well be able to meaningfully provide such links when pressed to do so.  
 Apart from the above quantitative analyses and ensuing interpretations, we decided to also take a 
look at qualitative aspects of our data.  For example, did the answers to the study questions (see examples 
in Box 1) and the arguments that were constructed by the directed students suggest that the assignments 
had been carried out conscientiously and meaningfully?  We had some worries in this respect, due to the 
selective nature of our participants.  The students in our experiment were students who had performed 
very badly on previous statistics exams, either because they lacked the necessary skills, or the necessary 
motivation, or both.  The possibility that our selected group of students would lack the motivation to 
invest enough time and effort in the assignments was an issue of concern to us.  If students did not 
seriously attempt to construct an argument on the basis of the provided material, the whole exercise 
would be meaningless as no self-explanatory activity would result.  
 Both in the answers to the study questions and in the constructed arguments we found evidence 
that supported our concern.  In the use of the study questions, for instance, students sometimes failed to 
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answer a question, simply putting down a question mark or nothing at all.  Other questions showed 
answers that were very similar across students, indicating that these answers had simply been copied from 
the text in Moore and McCabe.  Both the failure to respond and the mindless copying of text are 
indications of insufficient effort.  A question like, “What is meant by a test statistic?” is direct and 
unambiguous enough for the student to think it over and to give a meaningful answer in his or her own 
words.  Open spaces and copied text suggest minimal effort in the completion of this task.  Although we 
encountered various instances in which the above was the case, many other students had considered the 
questions seriously and responded in meaningful and semantically idiosyncratic ways. 
 The construction of the arguments also showed a wide variation in the seriousness with which 
this task was carried out.  On the one hand, we encountered students who had made a serious effort to 
construct a sound argument that included all of the answers to the study questions that were meant to be 
used.  On the other hand, there were students who sometimes did not construct any argument at all but 
had simply written “Correct”, meaning that in their view the given statement was true.  Most of the 
students fell somewhere in between these two extremes, constructing arguments that were incomplete 
(i.e., did not contain all the answers to the selected study questions) or that contained the answers to the 
study questions in a mindless or meaningless way (e.g., instead of constructing an argument, a student 
sometimes wrote down all the answers to the study questions selected and than concluded with “the 
statement is therefore false.”  
 Overall, we found that our students had put in at least some effort to complete all the 
assignments.  But the effort ranged from very minimal to exemplary.  We feel it is noteworthy that even 
in this case, in which lack of motivation does seem to have played an impeding role, the test for 
conceptual understanding showed a significant difference in favor of the directed students.  

Perspectives for Implementation in the Curriculum 

We have presented the results of an experimental study in which we compared two fairly small 
groups.  Apart from the sample size, the homogeneous population that we studied (all very weak students 
in terms of their record on previous statistics exams), and the inconsistent results of the study also 
combine to discourage us from making sweeping assertions and conclusions.  However, results from 
previous studies (Broers, 2001; Broers & Imbos, in press) as well as our personal experience with this 
teaching method lead us to believe that the method advocated has the potential to enrich the statistics 
curriculum and, indeed, the curriculum of any complex subject in which connected understanding is a 
goal. 
 Stressing the utility of a method for achieving conceptual understanding naturally raises the 
question of its usefulness for stimulating other types of statistical understanding.  In the literature on 
statistics education lots of references can be found regarding the distinction between statistical literacy, 
statistical reasoning and statistical thinking.  Somewhat surprisingly, the term conceptual understanding is 
not often used in a discussion on the dimensions of statistical knowledge.  As delMas (2002) noted, the 
terms statistical literacy, statistical reasoning and statistical thinking are often used interchangeably and 
sometimes used in different ways by different people.  

According to Garfield (2002), “Statistical reasoning may be defined as the way people reason 
with statistical ideas and make sense of statistical information.”  This involves making interpretations 
based on sets of data, graphical representations, and statistical summaries.  Much of statistical reasoning 
combines ideas about data and chance, which leads to making inferences and interpreting statistical 
results.  Underlying this reasoning is a conceptual understanding of important ideas, such as distribution, 
center, spread, association, uncertainty, randomness, and sampling.  Note as a matter of interest that 
Garfield does make a distinction between statistical reasoning and conceptual understanding, without 
going into a definition of the latter.    
 Reviewing a number of articles on statistical literacy, Rumsey (2002) encounters various 
definitions of and references to statistical literacy (or, as it is alternatively called, statistical competency).  
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It is sometimes defined as an individual’s "...ability to interpret and critically evaluate statistical 
information, data-related arguments, or stochastic phenomena, which they may encounter in diverse 
contexts, and when relevant (...) their ability to discuss or communicate their reactions to such statistical 
information" (Gal, 2002, p. 2-3).  It is alternatively defined as “being able to interpret graphs and tables. 
Being able to read and make sense of statistics in the news, media, polls, etc.” (Garfield, 1999).  Snell 
(1999) defined statistical literacy as “the ability to understand statistical concepts and reason at the most 
basic level.”   Based on  definitions such as these, Rumsey (2002) concludes her overview of statistical 
literacy with the statement that literacy primarily reflects data awareness: the ability to understand how 
data are used to make a decision.  
 The final important component of statistical knowledge — statistical thinking — has much in 
common with both literacy and reasoning.  Yet, as Chance (2002) puts it, “While literacy can be narrowly 
viewed as understanding and interpreting statistical information presented, for example in the media, and 
reasoning can be narrowly viewed as working through the tools and concepts learned in the course, the 
statistical thinker is able to move beyond what is taught in the course, to spontaneously question and 
investigate the issues and data involved in a specific context.”  
 What becomes clear from this small overview of statistical literacy, reasoning, and thinking is not 
only that these categories tend to overlap with each other but also with our idea of conceptual 
understanding.  Yet, whereas attempts to clearly demarcate the other three categories from each other 
remain somewhat elusive (see delMas, 2002, who discusses a number of different possible demarcations 
with the help of Venn diagrams), the idea of conceptual understanding as the perception of links between 
statistical concepts seems less controversial.  Why this is so can be discussed on the basis of an 
observation that we made on questioning students about results of a one-way ANOVA, in which the F-
statistic yielded a value smaller than 1.  When we asked students if they could make a decision on the 
acceptance or rejection of the null hypothesis, based on this F-value, but without getting to see the 
accompanying p-value, only a minority of our better students came to a conclusion somewhat like this: 
The numerator (MS Between) and denominator (MS Within) of the F ratio are estimators.  As such they 
form random variables with an expected value.  Under the null hypothesis, both estimators have the same 
expected value, equaling the population error variance.  If the null hypothesis is not true, MS (Between) 
has an expected value that is larger than MS (Within).  Since both estimators are random variables, MS 
(Between) can be equal to, smaller than or larger than MS (Within) regardless of whether the null 
hypothesis is true or not.  However, only if F is sufficiently larger than 1 can there be reason to suspect 
that the null hypothesis maybe false.  
            The interesting point about this process of reasoning is that it can be taken to be indicative of 
statistical literacy, reasoning, or thinking, without being able to say that it is primarily the one and not the 
other.  However, per definition, what we see here is a demonstration of conceptual understanding.  The 
students that offer this line of reasoning show that they understand the links between concepts such as 
estimators, random variables, expected value, and probably between test statistic, null hypothesis, and 
conditional probability as well. It is by demonstrating conceptual understanding that they reflect statistical 
literacy and reasoning.  What we hope to suggest here, is that conceptual understanding may be an aspect 
of statistical knowledge that is more basic than statistical literacy, reasoning, and thinking, and because of 
this, is both easier to define as well as easier to assess. 
 Apart from being possibly more basic, there is another conspicuous difference between 
conceptual understanding on the one hand and the other components of statistical knowledge on the other.  
Considering the examples discussed in Garfield (2002), Chance (2002), Rumsey (2002) and delMas 
(2002), it seems that where literacy, reasoning, and thinking do not overlap with conceptual 
understanding, they primarily reflect what cognitive psychologists call procedural knowledge of statistics.  
Knowing how to make use of your data in order to come to proper inference reflects statistics knowledge 
as a skill.  Underlying this skill is a body of declarative knowledge, the knowledge of a body of concepts 
and principles and an understanding of the way these various concepts relate to each other.  Statistical 
literacy – reasoning and thinking – as discussed above, all encompass conceptual understanding but 
involve much more than that.  We believe the conceptual understanding that underlies the three 
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dimensions of statistical knowledge forms the declarative part of statistical understanding, whereas the 
surplus meaning of literacy – reasoning and thinking – primarily pertains to the procedural part.  So, 
understanding the F-statistic as forming the ratio between two estimators with similar expected values, if 
the null hypothesis holds, would typically reflect conceptual understanding.   Recognizing the relevance 
and validity of the F distribution for your own dataset as well as for data from different but related 
research designs reflects a reasoning process that includes but transcends conceptual understanding in 
demonstrating procedural understanding. 
 Saying that statistical reasoning includes but transcends conceptual understanding seems to imply 
a hierarchical relationship between these two types of statistical understanding.  Of course, if we were to 
see the ability to reason statistically as being indicative of both conceptual and procedural knowledge of 
statistics, this would depict statistical reasoning as a process that is richer than mere conceptual 
understanding.  At the same time, it is possible for a student to possess procedural knowledge without 
being able to reason properly.  This would be the case whenever we have a student who is capable of 
carrying out a number of necessary steps in performing a statistical analysis, without really understanding 
the rationale of what he or she is doing.  Such a person demonstrates procedural knowledge without the 
necessary conceptual understanding to underpin it.  Such a student has learned recipes for doing statistics. 
 If we accept conceptual understanding to be a prime target of statistics education, the important 
question arises of exactly what concepts we want the student to learn and also what particular links 
between concepts we want them to learn.  This is, of course, the sole responsibility of the statistics 
teacher.  The instructor decides the level of abstraction at which the study material is to be taught and also 
which particular concepts and links between concepts may be taken for granted.  To become fully aware 
of the concepts and interrelationships between these that the teacher wishes the student to learn, it may be 
helpful to write out a list of all the relevant propositions the instructor wishes to convey in any particular 
lecture (see Broers, 2001). 
 Helping students to develop conceptual understanding (i.e., to perceive the interrelationships 
between relevant concepts) can be done in various ways.  However, all methods require a conscious effort 
by the student to integrate the newly taught material into his or her existing knowledge framework, where 
necessary by reforming older conceptions and beliefs. We believe that having students explain the 
material to each other can be valuable in stimulating them to reflect on what they currently understand 
and where their knowledge falters. Such an activity can be assigned in a very unstructured or in a more 
structured way.  For instance, we could assign two students the tasks of explaining to each other the logic 
of hypothesis testing, but we could also give them a true-false statement to discuss, like “A p-value of 
0.03 demonstrates the falsehood of the null hypothesis.”  Such a training method, although somewhat 
intensive and therefore demanding, may yield very interesting data.  For example, we might wish to 
investigate why students either did or did not accept certain arguments brought forward by their fellow 
students. 
 The method we have advocated is, of course, very akin to such group activity.  Although we have 
presented it as an assignment to be carried out by individual students in isolation, it can of course be 
modified to be presented in some sort of group activity form.  The main feature or defining characteristic 
of the method we have advocated, however, is the presentation by the teacher of a subset of propositions 
that we want the students to learn and to understand.  By coupling a particular true-false statement to a 
particular subset of propositions (knowledge fragments in which concepts are defined or in which 
relations between concepts are specified), we intentionally direct the student to reflect on a particular 
body of interrelated concepts.  Moreover, we force the student to make use of a particular argument.  
Without deliberately instructing the student to make use of a prescribed subset of propositions, we would 
end up with very different arguments on the same true-false statement.  All of these arguments may be 
basically correct, but some students may leave a lot of premises unmentioned because they do not know 
them, whereas others may leave them implicit as unnecessary to articulate.  It would be reasonable to 
assume that the same assignment would yield different arguments, depending on the audience the student 
feels he or she has to convince.  In theory, our method would yield similar arguments regardless of 
intended audience as we have prescribed the collection of premises that should be included in the 
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argument.  It should be reiterated though, that in the research we have reported in this paper, students 
often did not follow the instructions and left several of the prescribed propositions out of the argument.  
 What role can our method play in the statistics curriculum?  Just as worked-out-examples seem to 
be effective for the development of procedural knowledge in mathematics education, we believe that our 
method could be of value for the development of conceptual understanding of more verbally articulated 
theories.  Although statistics is a branch of mathematics, many of its knowledge components, especially at 
the elementary level, can be made intuitively plausible by a verbal exposition (e.g., the central limit 
theorem and its useful applications).  We believe that our method can help students in their efforts to 
explore the logical structure of these verbal theories.  Since many students of elementary statistics have a 
non-mathematical background, helping them focus on the important interrelations between elementary 
concepts seems both worthwhile and necessary.  If students fail to obtain an intuitive grasp of basic 
statistical theory, the more ambitious goals of training them to think or reason statistically cannot be 
attained.  So our method could play a role in the statistics curriculum very much like worked-out-
examples play in the mathematics curriculum. 
 In our own university, we have been using a variation of the method discussed in this paper.  
Working with small groups that are guided by a senior student, we have implemented the method as 
follows.  All students are provided with a list of true-false statements relating to the statistical topic at 
hand.  The senior student is provided with a list of study questions to put forward, coupled to a particular 
true-false statement.  The students read out the true-false statement, after which the senior student 
presents the study questions one by one.  The students answer these questions in turn and try to relate 
these answers to the true-false statement.  When all of the study questions have been put forward by the 
senior student, the students have enough information to infer whether the statement as given is either true 
or false.  The discussions that this approach yields have invariably been considered by the students as 
valuable and to be a clear help in their attempts to come to an understanding of the interrelationships 
between the statistical concepts.  
 Alternatively, the written form of the method, as discussed in this paper, could easily be handed 
out to students as homework.  We have only recently begun to study the potential benefits of this method, 
and further research is needed to ascertain whether it holds enough promise and if so, how it could best be 
implemented in the statistics curriculum. 
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Paper Appendix 1:  Example of a Concept Map (constructed by a participant and 
not necessarily complete or fully accurate) 
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Paper Appendix 2: Some Examples of Items from the Test for Measuring 
Conceptual Understanding (Note that the test will be modified and upgraded 

before each use to reflect concerns about interpretation.) 
 

Background: The national mathematics exam in 2002 showed an average score of 7 (measured on a 10-
point scale). The distribution of exam scores was slightly skewed to the right. Many teachers believe that 
the 2003 exam was clearly more difficult than that of the previous year. The null hypothesis that the 
population mean equals 7 is tested against the one-sided alternative that the population mean is smaller 
than 7. A random sample of 1000 examinees who participated in the 2003 exam is drawn out of the 
population of students who took the mathematics exam in that year. 
 
Item 3 
The value of the test statistic had a corresponding (one-sided) p-value of 0.07. We may conclude that  
A the sample mean equaled 7 
B the sample mean was greater than 7 
C the sample mean was smaller than 7 * 
D no conclusions can be derived about the value of the sample mean 
 
Item 6 
The researchers constructed a 90% confidence interval for the population mean. Considering the 
information in item 3, which of the intervals specified below could the researchers have found? 
 
A [7.0 ; 7.1] 
B [5.9 ; 6.0] 
C [6.9 ; 7.0] * 
D [8.0 ; 8.1] 
 
Item 8 
Suppose that the researchers had not used a one-sided but a two-sided test of significance.  In that case the 
reported p-value 
 
A would also equal 0.07 
B would be smaller than 0.07 
C would be greater than 0.07 * 
D the information given does not allow a conclusion concerning the resulting p-value 
 
 
. 
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