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Neurons are noisy. Neuronal activity
varies in response to repetitions of the
same stimulus. Neuronal noise is ubiq-
uitous in the brain and is often corre-
lated among neighboring neurons,
which means that stimulus-independ-
ent fluctuations in neuronal activity
can affect entire populations of cells
(Schmitz and Duncan, 2018). One might
therefore reasonably expect that corre-
lated neuronal noise poses a major chal-
lenge for the capacity of the brain to
process and store information. How can
one brain region reliably interpret a stim-
ulus that was just presented from the
noisy output of another region? Yet the
brain somehow accomplishes this feat
since our perceptions and actions are
remarkably stable.

The influence of neuronal noise on pop-
ulation coding has become a focus of
intense debate in computational neuro-
science over recent decades. Some research-
ers have found evidence that correlated
noise fundamentally constrains the amount
of information that can be carried by
neuronal population activity (Cohen and

Maunsell, 2009; Mitchell et al., 2009;
Verhoef and Maunsell, 2017). By con-
trast, earlier work has shown that corre-
lated noise is inconsequential to the
amount of information carried by the
population (Averbeck and Lee, 2003,
2006). In a recent report in The Journal
of Neuroscience, Bartolo et al. (2020)
conducted a series of electrophysiology
experiments using multielectrode array
recordings in macaques to reconcile
these two seemingly conflicting lines of
evidence.

Bartolo et al. (2020) recognized a
major source of methodological vari-
ability in prior monkey electrophysiol-
ogy experiments examining neuronal
noise, namely the total number of neu-
rons recorded in each animal. Using
simulations of neuronal activity, previ-
ous work had yielded predictions of
how neuronal noise impacts informa-
tion processing at increasing population
sizes (Zohary et al., 1994; Abbott and
Dayan, 1999). Based on these predic-
tions, Bartolo et al. (2020) hypothesized
that the impact of neuronal noise on
population coding becomes more preva-
lent with increasing population size. If
the influence of neuronal noise on pop-
ulation coding scales with the size of the
recorded population, this might recon-
cile why different studies report a differ-
ent influence of noise correlations on
information.

To test their hypothesis, the authors
leveraged high-density multielectrode arrays
to simultaneously record from hundreds of
neurons in two macaque monkeys. They
placed the arrays over prefrontal regions
known to be involved in the generation
of eye movements. Neuronal activity was
recorded from these arrays while the mon-
keys performed a simple task in which they
were cued to perform a leftward or right-
ward saccade.

To estimate the amount of information
in the recorded neuronal populations,
Bartolo et al. (2020) examined distribu-
tions of population activity corresponding
to either of the two saccade directions.
The greater the overlap between the two
response distributions, the less the infor-
mation carried by the population for dis-
tinguishing the two conditions. With this
measure of information in hand, Bartolo
et al. (2020) next examined how correlated
noise influences population coding as the
recorded population grows in size.

Bartolo et al. (2020) found that corre-
lated noise limits the amount of informa-
tion carried by the population. However,
this effect became apparent only when the
population size surpassed ;350 neurons.
Increasing the population size further, up
to 700 neurons, revealed still larger effects
of noise correlation on population coding.
Thus, Bartolo et al. (2020) confirmed their
hypothesis that the effect of noise on infor-
mation encoded by a neuronal population
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increases with population size. They also
provide a lower bound on the population
size needed for detecting information-
limiting correlations in prefrontal cortex
during a simple saccade task. However,
their results leave open how noise correla-
tions arise, what their potential neurobio-
logical function is, and what mechanisms
the brain is endowed with for altering the
dynamics of correlated noise in popula-
tion coding. Below, we discuss each of
these three issues through the lens of
recent theoretical and empirical neuro-
science research.

We first consider the issue of how
noise correlations arise from population
activity. To do so, we use the metaphor of
a choir for our neuronal population,
where each singer’s voice is the spiking
output of a neuron, and the driving stimu-
lus is the choir conductor. What tune a
singer sings (the spiking output of the neu-
ron) is determined by both the input from
the conductor (the stimulus) and their
harmonization with neighboring singers’
voices (the neuronal population). Now
consider that the choir is composed of
groups of neighboring singers, with each
group specializing in a different pitch: the
sopranos, altos, tenors, and basses. So too,
cortical populations are composed of
ensembles of neurons, with each ensemble
preferring different stimulus features: a
specific orientation, color, or eye move-
ment. For a high note in the song, the con-
ductor signals the sopranos, whose voices
then synchronize and dominate the other
groups in the choir. Similarly, an ensemble
of neurons strongly activated by their
preferred stimulus will synchronize and
dominate other ensembles of neurons.
They dominate not only because they are
strongly excited by the stimulus, but also
because they inhibit neighboring neurons
with similar preferences (Verhoef and
Maunsell, 2017). Thus, the outputs of the
neighboring neurons are the joint result of
excitatory stimulus inputs and inhibitory
synchronized fluctuations originating from
the dominant population. These fluctua-
tions are correlated noise.

The noisy correlated fluctuations appear
to represent an important mechanism by
which neurons maintain accurate coding of
information—they are not an accident
but rather an important component of
neurobiological function. Specifically,
shared noise allows neurons to main-
tain an excitatory–inhibitory balance
(Reynolds and Heeger, 2009; Carandini
and Heeger, 2012; Verhoef and Maunsell,
2017). Consider a neuronal ensemble max-
imally excited by its preferred stimulus,

leading to the injection of shared noise
into neighboring similarly tuned ensem-
bles. These noisy fluctuations reduce the
amount of information carried by other
“competing” ensembles and, thus, inhibit
their contribution to the population code.
In this way, populations can dynamically
code stimuli through continuous perturba-
tion of this excitatory–inhibitory balance
(Schmitz and Duncan, 2018).

This coding scheme works well in most
cases, but it also leaves the brain open
to mistakes. Consider a noisy fluctuation
received by multiple similarly tuned neu-
ronal ensembles at the same time. This
wave of noise could momentarily “wiggle”
the distribution of outputs in an entire
population such that it mimics a stimulus
change, leading downstream populations
to misinterpret what stimulus actually
occurred. Recent theoretical and empirical
work has demonstrated that this type of
effect does indeed occur, though it accounts
for a relatively small proportion of shared
noise in the cortical population activity
(Moreno-Bote et al., 2014; van Bergen et
al., 2015; Nogueira et al., 2020). These
forms of noise correlation are thus termed
information-limiting noise because they
distort the stimulus information carried by
the population. It is this form of informa-
tion-limiting noise that Bartolo et al. (2020)
were interested in isolating. Their findings
demonstrate that the detectable effect of in-
formation-limiting noise scales with the
number of neurons recorded.

The information-limiting effects of cor-
related noise only become apparent at
larger population sizes because the corre-
lated noise then starts to dominate the
population response (Zohary et al., 1994;
Shadlen and Newsome, 1998; Averbeck et
al., 2006). Let us consider a population
consisting of five neurons versus a popula-
tion consisting of a hundred neurons.
Five neurons can make 20 pairs while a
hundred neurons can make 9900 pairs.
The number of possible pairs thus grows
exponentially with population size. Shared
fluctuations because of correlated noise
between neuron pairs contribute to the
fluctuations of the population response.
Therefore, the relative contribution of cor-
related noise to the population response
grows exponentially with population size.
Now consider adding a neuron to an exist-
ing large population. The unique contribu-
tion of the neuron will be dwarfed by the
correlated noise. Correlated noise thus pla-
ces an upper bound on the stimulus infor-
mation that can be gained by including
additional neurons (Zohary et al., 1994;
Shadlen and Newsome, 1998; Averbeck et

al., 2006). The upper bound is lower and
reached more quickly with increasing
strengths of correlated noise (Zohary et al.,
1994). Because electrophysiology studies of
monkey visual cortex often report analyses
on similarly tuned populations of neurons
(Mitchell et al., 2009; Smith and Sommer,
2013; Ruff and Cohen, 2014), these studies
likely captured the effects of information-
limiting correlations despite recording
from smaller populations.

If noise correlations represent an
important mechanism by which neuro-
nal ensembles compete for dominance
in the population code, and can also
limit the amount of information car-
ried in populations of neurons, the
brain must be endowed with mecha-
nisms for adjusting noise correlations.
Over the past decade, multielectrode
monkey electrophysiology research has
shown that attention represents one
such mechanism (Cohen and Maunsell,
2009; Mitchell et al., 2009; Rabinowitz
et al., 2015; Verhoef and Maunsell,
2017). Attention is critical for biasing
competition among similarly tuned neu-
ronal ensembles to enable fine-grained
discrimination of behaviorally relevant
stimuli. This biasing mechanism appears
to be accomplished in part by reducing
shared inhibitory inputs arriving in the
dominant (preferred) ensemble. Another
mechanism the brain may use to deal
with correlated noise is to read out infor-
mation from neuronal populations that
are diversely tuned (Ecker et al., 2011;
Tremblay et al., 2015; Leavitt et al., 2017).
If the sampled population has sufficiently
heterogeneous tuning functions, informa-
tion processing remains unaffected by
correlated noise (Ecker et al., 2011).

Bartolo et al. (2020) demonstrated that
population size plays a crucial role in our
ability to detect information-limiting noise
correlations in population activity. Their
study further underscores the multiple
theoretical and methodological considera-
tions needed to systematize this body of
research: neuronal population size, tuning
similarity, and stimulus competition. The
devil is in the details. Each of these variables
can dramatically influence the relationship
of noise correlation to information coding
in population activity. Future electrophysi-
ology work with more extensive coverage
of the brain in multiple different patches of
cortex and a broader array of stimuli and
tasks will likely lead to further advances
in our understanding of the functional ba-
sis of noise correlations in cognition and
potentially will pave the way for translating
these discoveries to humans.
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