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Abstract

Representational similarity analysis (RSA) tests models of brain computation by
investigating how neural activity patterns reflect experimental conditions. Instead of
predicting activity patterns directly, the models predict the geometry of the
representation, as defined by the representational dissimilarity matrix (RDM), which
captures to what extent experimental conditions are associated with similar or
dissimilar activity patterns. RSA therefore first quantifies the representational geometry
by calculating a dissimilarity measure for each pair of conditions, and then compares
the estimated representational dissimilarities to those predicted by each model. Here we
address two central challenges of RSA: First, dissimilarity measures such as the
Euclidean, Mahalanobis, and correlation distance, are biased by measurement noise,
which can lead to incorrect inferences. Unbiased dissimilarity estimates can be obtained
by crossvalidation, at the price of increased variance. Second, the pairwise dissimilarity
estimates are not statistically independent, and ignoring this dependency makes model
comparison statistically suboptimal. We present an analytical expression for the mean
and (co)variance of both biased and unbiased estimators of the squared Euclidean and
Mahalanobis distance, allowing us to quantify the bias-variance trade-off. We also use
the analytical expression of the covariance of the dissimilarity estimates to whiten the
RDM estimation errors. This results in a new criterion for RDM similarity, the
whitened unbiased RDM cosine similarity (WUC), which allows for near-optimal model
selection combined with robustness to correlated measurement noise.

Introduction

Systems neuroscience investigates how patterns of brain activity implement the
computational processes that support behavior. The computations can be understood
as transformations of representations that reflect task-relevant information about the
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external world, the state of the animal’s body, its needs, goals, plans, or actions. Models
of brain computation seek to explain how the brain processes information [1]. In order
to formally test such models, we must compare the representations in the models to the
activity patterns measured in the brain. An essential challenge for computational
neuroscience, therefore, is to develop methods for comparing representations between
brains and models.

We focus here on the approach to characterize brain representations at the level of
the neural population [2, 3], which abstracts from the roles of individual neurons, and
makes it easier to compare representations between brains and models [4]. Brain
representations are characterized by measuring patterns of activity across a brain region.
Each activity pattern is associated with an experimental condition, for example the
presentation of a particular sensory stimulus, and defines a point in the multivariate
response space [5]. The distances among these points define the geometry of the
representation. If the noise is isotropic and homoscedastic, each distance determines
how well one could discriminate between two patterns. The distance matrix therefore
determines the encoded information. The representational geometry additionally
captures aspects of the format of the code, revealing, for example, what subset of the
encoded information is amenable to linear readout [1].

The analysis of representational geometries has come to be called representational
similarity analysis (RSA, [4]), and has been applied to data from invasive
electrophysiology, fMRI, electroencephalography (EEG), or other methods. RSA
proceeds in three steps: In the first step, the estimated activity patterns are used to
compute a condition-by-condition representational dissimilarity matrix (RDM, see
Figure 1). An important decision here is the choice of dissimilarity measure. Choices
include the accuracy of pairwise decoders, correlation distance, or Euclidean and
Mahalanobis distances [6, 7]. In a second step, the data and models are compared by
relating the vector of upper-triangular elements of the data RDM (Figure 1) and the
corresponding vectors for the model RDMs. Because the dissimilarity estimates
typically lack units, models cannot predict the values of the dissimilarities directly.
Instead models predict the ratios or ranks of the dissimilarities. Therefore, the
off-diagonal elements are compared using cosine similarity, the Pearson correlation, or
the Spearman or Kendall τa rank correlation [8]. In the third and final step, models are
inferentially compared using frequentist parametric [9] or non-parametric tests [8].

In this paper, we address two closely related problems for inference using RSA. The
first problem is that distances (including correlation, Euclidean, and Mahalanobis
distances) are positively biased when directly estimated from noisy data [6]. Even if the
true activity patterns are identical, and so the true distance is zero, the measured
activity patterns will differ by virtue of the measurement noise, and the estimated
distance will be larger than zero. If different conditions are measured with different
noise levels, or if measurement noise is correlated across conditions, different distances
will be biased to different extents. This can distort the representational geometry and
potentially lead to systematically incorrect inferences [10]. To avoid the noise-induced
bias in distance estimates, we have previously proposed crossvalidated dissimilarity
estimators [6, 8], which provide distance estimates with an interpretable 0 point. The
removal of bias by crossvalidation comes at the cost of slightly increased variance. In
this paper, we derive analytical expressions for the bias and variance of both biased
(non-crossvalidated) and unbiased (crossvalidated) distance estimates. This allows us to
gain analytic insights into when the use of unbiased distance estimates is advantageous.

The second problem is that the elements of an RDM have a complex covariance
structure. This covariance, if not accounted for, can make model selection sub-optimal.
The comparison between RDMs can be visualized in a space in which each unique
dissimilarity of the RDM defines a dimension (Figure 2). When comparing RDMs with
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Fig 1. Analysis pipeline for RSA. The data consists of M independent estimates of the activity
patterns B. A model is defined with a set of features that relate to the chosen experimental conditions
and that are hypothesized to be encoded in the activity patterns. To compare data and model, the
patterns are transformed into a Representational Dissimilarity Matrix (RDM). All unique pairwise
dissimilarities are then stretched to a vector (d) and compared to the vector of model dissimilarities
(m).

d

m2m1

Fig 2. Influence of the covariance of the dissimilarity estimates on model selection. The
data RDM d and two model RDMs m1 and m2 are visualized as vectors in the space spanned by the
dissimilarities (one dimension for each pair of conditions). The covariance between distance estimates is
visualized using likelihood contours (red) under a Gaussian approximation. The data RDM is closer to
m2 in terms of the cosine similarity (angle between vectors). However, the data RDM is more likely
under m1, when the covariance is taken into account.

November 25, 2020 3/25



the cosine similarity, the model that has the smaller angle with the data RDM will be
considered the better fit. While this approach is not systematically wrong, model
comparison will not be optimal. In the second part of the paper, we therefore propose a
simple method to address this issue: Using the analytical expression for the covariance
of the different dissimilarity estimates, we can effectively calculate a cosine similarity in
a “whitened” space, in which the measurement error is isotropic. We show that this
whitened RDM cosine similarity based on biased distance estimates is equivalent to the
RV coefficient [11], which is also known as the linear Centered Kernel Alignment [12].
By combining the whitened RDM cosine similarity with unbiased distance estimates, we
define a novel criterion, the whitened unbiased RDM cosine similarity (WUC). The
WUC substantially improves the power of inferential model comparisons, performing
close to the theoretical maximum of the likelihood-ratio test [13–15] for normally
distributed data. At the same time, the WUC is robust to violations of noise
assumptions, making it the method of choice for RSA model comparison in many
applications.

Results

Basic Definitions

Let matrix B be the matrix of true activation values for K experimental conditions
measured over P measurement channels. Each row of B contains an activity pattern
across channels, elicited by a single experimental condition. Each column of B contains
an activity profile across conditions, for a single channel. As an example, consider the
analysis of fMRI data, where the channels are voxels. In this case, the data (Y) are
time series of blood-oxygenation-level-dependent (BOLD) signal measurements for every
voxel. These data can be separated into M different scanner runs or sessions of data
recording that can be assumed to be independent. The measured data Ym is assumed
to be a linear function of the true activity patterns B and a design matrix Xm, which
indicates to what degree each activity pattern is active at each time.

Ym = Xm B + εm. (1)

From each data partition, indexed by m ∈ {1..M}, we can obtain an estimate of the

activity patterns B̂m. We consider here the relatively general situation where these
estimates can be dependent across conditions with covariance ΣK , and across voxels
with covariance ΣP (Figure 1).

The first step in RSA is to compute the dissimilarities between activity patterns. Let
bi be the ith row of B, that is, the true activity pattern for the ith condition across
voxels. We define the kth dissimilarity to be between conditions i and j. In this Results
section, we consider the squared Euclidean distance, but we show in the Methods
section how the results generalize to the squared Mahalanobis distance. Both
dissimilarities are based on the difference between activity patterns δk = bi − bj .
Specifically the squared Euclidean distance is

dk = (bi − bj)(bi − bj)
T /P = δkδ

T
k /P. (2)

Note that we are normalizing all dissimilarities by the number of channels to make
the measures comparable across regions of different sizes. In an experiment with K
conditions, we have a total of K(K − 1)/2 ≡ D unique pairwise distances.
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Biased and unbiased estimates for the squared Euclidean
distance

The simplest estimator of the squared Euclidean distance can be obtained by first
averaging the estimated pattern-differences across partitions

δ̄k =
1

M

M∑
m

δ̂k,m, (3)

and then taking the inner product of these estimated pattern-difference vectors. When
plugging Eq. 3 into Eq. 2, we can see that the distance estimate relies on all the
pairwise products of pattern differences:

d̂k =
δ̄kδ̄

T
k

P
=

1

M2

M∑
m

M∑
n

δ̂k,mδ̂
T

k,n/P (4)

As shown in the methods, this expected value of the estimate (E()) is positively
biased by measurement noise. The positive bias arises because we are multiplying a
noisy pattern estimate with itself. The size of the bias is determined by the
measurement variance of the pattern difference var(δ̂k) = Ξkk.

E(d̂k) = δkδ
T
k /P + Ξkk/M. (5)

If the measurement variance across all pattern differences is the same, the bias is a
constant value across all dissimilarities, and can be accounted for by using Pearson or
rank correlations to compare RDMs (see below). However, if the variance differs, the
bias will systematically differ across dissimilarities, and possibly distort the
representational geometry in favour of the wrong model [10].

To avoid this bias, we can estimate squared distances by only multiplying pattern
estimates from different, and hence independent, partitions [6, 8] with each other. Thus,
we drop from Eq. 4 all pairs where m = n.

d̃k =
1

M(M − 1)

M∑
m

M∑
n 6=m

δ̂k,mδ̂
T

k,n/P (6)

In contrast to the biased estimate, d̂k, we denote the unbiased estimate as d̃k. The
bias is removed, as only independent partitions enter the product (for details, see
Methods). Avoiding products where noise is multiplied with itself ensures that the
expected value of the estimator is the distance we want to estimate:

E(d̃k) = δkδ
T
k /P (7)

In other words, the crossvalidated distance estimator is unbiased.

Variance of distance estimates

The removal of the bias, however, does not come for free: As can be seen from Eq. 4
and 6, the unbiased estimate uses fewer pairs of activity patterns to estimate the true
distance. We therefore expect this estimate to have a higher variance than the unbiased
estimate. Indeed, we show in the methods that the variance of the biased distance is

var(d̂k) =
1

P 2

(
2tr(ΣPΣP )

M2
Ξ2

kk +
4P

M
δkΣP δ

T
k Ξkk

)
. (8)
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unbiased (red) and biased (blue) estimates of the squared Euclidean distance, plotted against the
variance of the estimates. The points indicate simulations, the dotted line the predicted mean and
variance. The arrows show the the difference in expected means and variance.

A very similar expression is obtained for the unbiased estimate of the distance:

var(d̃k) =
1

P 2

(
2tr(ΣPΣP )

M(M − 1)
Ξ2

kk +
4P

M
δkΣP δ

T
k Ξkk

)
. (9)

Both expressions have two components: The first term of the equation arises from
the multiplication of noise with noise. The variance scales in the square of the
measurement variability of the corresponding pattern differences (Ξkk). The only
difference between the biased and unbiased estimate is the size of this component, which
is larger by factor M/(M − 1) for the unbiased estimate. The second term arises from
the multiplication of the true pattern difference (δk) with measurement noise. If the
true distance is zero, i.e. if the are no differences between the true activity patterns, this
second term vanishes. The overall balance between these two terms also depends on the
strength of the signal (δk), and on the noise covariance structure across channels (ΣP ).

The insights from the equations are summarized in Figure 3, which shows the mean
and variance of the squared distance estimates for a range of true distances between 0
and 1.2. If the true distance is 0, the mean of the unbiased estimate is zero, whereas the
mean of the biased estimate is inflated by Ξkk/M . In exchange, the variance of the
biased estimate is lower by a factor of (M − 1)/M . This difference is caused by using
different numbers of pairwise products: The biased estimate uses all M2 possible pairs,
whereas the unbiased estimate excludes M of the pairs (those of each partition with
itself). Thus, with M = 2 partitions, the variance of the unbiased estimate will be twice
as large. However, the difference diminishes as the number of independent partitions
increases. The second term of Eq. 8, 9 causes the variance of the distance estimate to
increase linearly with the true squared distance. This signal-dependence affects biased
and unbiased estimates equally.

Model comparison using RDM correlations or cosine similarity

Whether it is better to use biased or unbiased distance estimates depends on how these
estimates are used in subsequent inference. A common use case is to compare the
measured RDM to different competing models of neuronal representations. For this, the
upper triangular part of the RDM (which is symmetric about a diagonal of zeros) is

vectorized (Fig. 1). The vector of estimated distances (d̂ or d̃) is then compared with
the vector of model-predicted distances (m), and the model with the best
correspondence is selected.
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Which measure of correspondence is appropriate depends on the level at which the
models are meant to make predictions. If the models predict merely the rank-ordering
of the distances, a Spearman rank correlation (or when any of the models predict equal
representational distances for different pairs of stimuli, Kendall’s τA rank correlation) is
appropriate [8]. If the models make predictions about distances on an interval scale, one

can use the Pearson correlation, r(d̂,m). Calculating a correlation (whether Kendall,
Spearman, or Pearson) allows for arbitrary scaling between observed and predicted
distances, which is useful because the model-predicted dissimilarities are typically in
arbitrary units and the scaling of the data depends on the signal-to-noise ratio. These
correlation coefficients are also invariant to an additive constant. In the context of
biased distance estimates this is useful, as it discounts the positive bias arising from
noise, if the noise is equal across conditions.

If we have removed the bias already by using an unbiased distance estimator, we
have a ratio-scale measure, where 0 is an informative point, indicating that the two
patterns only differ by measurement noise. To exploit this additional information, we
can compute the correlation without subtracting the mean across distances. This
quantity is the RDM cosine similarity: the cosine of the angle between the vectorized
data RDM and the model RDM (Fig. 2).

r̃ =
d̃Tm√

(d̃T d̃)(mTm)
(10)

RDM correlation or RDM cosine similarity?

For models that predict the RDM on a ratio-scale, this leaves us with two consistent
choices: We can either compute the cosine similarity between the model and unbiased
distance estimates (Eq. 10, in short RDM cosine similarity), or the Pearson correlation
between the model and biased distance estimates (in short RDM correlation).

RDM correlations will only yield correct unbiased results if the positive bias is the
same across all distance estimates in the RDM - that is, when all pairwise pattern
differences are measured with the same variability. If one condition has a smaller
number of trials than another (e.g., after the exclusion of error trials), distances
involving this condition will be systematically larger (Eq. 5). Similarly, if the
measurement errors for one pair of conditions are more correlated than for another pair
(e.g. because some conditions were measured with fMRI in temporal proximity), then
the variance of their pattern differences will be smaller, and the distance estimates
lower. In both cases, the use of RDM correlations can bias inference towards the
incorrect model [10].

Consider for example the two RSA models depicted in Fig. 4a. In the first model,
condition 1 and 2 belong to one category, and conditions 3 and 4 belong to another
category. Within-category distances are predicted to be smaller than between-category
distances. In the second model, condition 1 and 3, and condition 2 and 4 belong to the
same category. We then simulated pure noise data, for which the measurement noise
was slightly correlated (r=0.15) across neighboring conditions (i.e. between 1-2, 2-3, and
3-4). Such correlation can occur in fMRI experiments, when the conditions were
collected in a fixed sequence, such as in a “traveling wave” design, often used for
perceptual fMRI experiments [16, 17]. When we used RDM correlations to compare the
data to the two models, 76.8% of simulations were attributed to model 1 and only
23.6% to model 2. This bias arises because the measurement noise induces a similarity
structure (lower distances between neighbouring conditions) that is more similar to
model 1 than model 2. When comparing models using unbiased distance estimates, the
model selection bias disappeared - now exactly 50% of the Null simulations were
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Fig 4. Model selection accuracy for RDM correlation and RDM cosine similarity. Each
of the four columns illustrates a different simulated scenario. The upper row shows the two model
RDMs being compared. The lower row shows the model-selection accuracy, as a function of the number
of independent crossvalidation partitions, using RDM correlation with biased distance estimators (blue)
or using RDM cosine similarity using unbiased distance estimators (red). Bias: percentage of pure noise
simulations for which Model1/Model2 is chosen using each criterion. (A) Two models with a different
categorical structure for 4 conditions are compared. If the measurement noise is correlated across
neighbouring conditions, model decisions using RDM correlations are biased, and perform worse than
RDM cosine similarities. (B) The same simulation as in A, but with independent measurement noise.
No bias in model decisions occurs, and RDM correlations perform better, with the advantage becoming
smaller as the number of partitions increases. (C) When the model RDMs only differ in the ratio of the
two levels of dissimilarity, RDM correlations perform at chance, because they remove the zero point
which is necessary to distinguish the two models. (D) When the zero-point is not essential, but helps
for model comparisons, using the RDM cosine similarities can be more accurate than RDM correlations
even if measurement noise is i.i.d.

assigned to each model.
To study the influence of this bias on model discrimination, we simulated data sets

coming from each model, while varying the number of independent partitions. We again
added correlated noise to each partition, and counted how often a data set was assigned
to the correct model. Decisions using RDM correlations were on average 65.1% correct
(Fig. 4a, blue line), independent of the number of partitions (note that we left the
overall amount of data the same, see methods). In contrast, decisions using RDM cosine
similarity improved with increasing number of partitions (Fig. 4a, red line). For 2
partitions, decisions based on RDM cosine similarity were less often correct then those
based on RDM correlations, but for more than 2 partitions, decisions based on
crossvalidated distance estimates performed better. This increase arises because the
variance for the unbiased estimates depends on factor M/(M − 1).

When we repeated the same simulation, using independent noise for each condition,
the bias disappeared, and so did the disadvantage in model selection accuracy (Fig. 4b).
Now decisions based on RDM correlations were always more accurate, although the
difference became smaller with an increasing number of partitions.

Does this mean that we should use RDM correlations with biased distances
estimates when the measurement noise is i.i.d.? Not necessarily: Using the RDM cosine
similarity can have advantages for some model comparisons, as it exploits the additional
information inherent in the zero point. Consider the two models depicted in Fig. 4c.
Both models have the same category structure, but differ in the predicted ratio of the
within-category to the between-category distances. To distinguish these models, a
meaningful zero point is required. RDM correlations remove this piece of information
and therefore remains at chance level (0.5). Inferences can only be made using the
RDM cosine similarities on unbiased distance estimates.

Finally, there are also cases in which the model decision is not fully dependent on
the zero point (as in Fig. 4c), but also not fully independent of it (as in Fig. 4b). For
example, the two models in in Fig. 4d have a different category structure, but also differ
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Fig 5. Covariance between elements of the RDM. (A) Covariance matrix for the 10 distance
estimates between 5 conditions, assuming that all true distances are 0 and activity patterns are
measured independently and with the same variance. (B) Covariance matrix of the 153 distances
between 18 conditions, where all the true distances are 0. (C) Covariance matrix for the 10 distance
estimates between 5 conditions, assuming true distances as depicted in the model of Figure 1.

in the size of the distances relative to zero. As a result, we observe that RDM cosine
similarities just outperform RDM correlations for larger number of partitions. Note that
decisions on Null-data are unbiased in either case, as the measurement noise was
modeled as i.i.d.

In summary, how the larger variability of crossvalidated distance estimates translates
into model selection accuracy, depends both on the number of available partitions, as
well as the structure of the two models that are being compared. In any case, unbiased
distance estimates provide a safe guard against deviations from the assumption of i.i.d
measurement noise — an advantage that in many cases will be well worth the small cost
in statistical power.

Covariance of distance estimates

The use of RDM correlations (for biased distance estimates) or RDM cosine similarity
(for unbiased estimates) for model comparison would be fully adequate if all elements of
the RDM were estimated independently and with the same variance. However, our
analytical expression for the full covariance matrix of dissimilarities (Eq. 28, 30) shows
that this is not the case, even if the underlying activity patterns are measured with i.i.d.
noise.

The correlation between distance estimates arises from the fact that the pattern
difference between conditions 1 and 2 is not independent from the pattern difference
between conditions 1 and 3 (even if all conditions are measured independently). The
covariance matrix for the 10 distance for a design with 5 conditions (assuming no true
pattern differences and i.i.d. noise) is shown in Figure 5a. Distances that share one of
the conditions (i.e., between d1,2 and d1,3) have a correlation of r = 0.25. Only
estimates of distances that do not share any conditions (i.e., d1,2 and d3,4) are
uncorrelated. If the measurement error on the patterns is not i.i.d., a more complex
co-dependence structure can arise.

For a design with a larger number of conditions (K=18, Fig. 2b), the number of
uncorrelated distances increases, i.e. the covariance matrix becomes sparser. This does
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not mean, however, that we can ignore the dependence structure. As we will show
below, accounting for the co-dependence structure becomes especially important in
designs with large numbers of conditions.

Similar to what we have observed for the variance, the covariance between distance
estimates also increases with increasing true distances. Figure 5c shows the covariance
matrix for distance estimates from data generated from the RDM model depicted in
Figure 1. Large true distances exhibit larger variances and also larger covariances with
other distances. The exact shape of the covariance matrix depends on the exact form of
the true pattern differences δ, as well as the covariance of noise across voxels (ΣP ).

Given the correlation between elements of the estimated RDM, we therefore would
expect that both RDM correlations (r) and RDM cosine angles (r̃) will perform
sub-optimally (see Figure 2). Indeed, in a previous paper [18], we have shown, for
several different simulation scenarios, that ignoring this covariance structure leads to
3-12% fewer correct model-selection decisions, as compared to a full likelihood-ratio test
between models, implemented in Pattern Component Modelling [14,18].

RDM comparison in whitened RDM-space

To improve model inference, we should therefore use the covariance matrix to transform
the elements of the RDM into a whitened space, in which all dimensions are measured
independently and with the same variance. Originally [18], we had suggested using the
full expression for the covariance (Eq. 30), and to estimate required quantities from the
data. This approach, however, can be slow, as the estimation must be done iteratively,
which each step involving the inversion of a K(K − 1)xK(K − 1) matrix - i.e. the
complexity of the algorithm scales with O(K4). Furthermore, for fMRI data, the spatial
structure of the signal (δ) and the measurement noise (ΣP )) are hard to estimate
separately.

We therefore propose a simplification to avoid estimating the right side of Eq. 28
and Eq. 30. Specifically, we suggest using the covariance structure of the distances
under the assumption that all distances are zero. In this case the variance simplifies to

Var(d̂) = c(Ξ ◦Ξ) = cV, (11)

where c is a proportionality constant that is not important for most applications. To
take this covariance matrix into account for model comparison, we can prewhiten the
distances by pre-multiplying them with V−

1
2 . In the case of the cosine similarity

between unbiased distance estimates, this leads to a new criterion, the whitened
unbiased RDM cosine similarity (WUC):

r̃w =
d̃TV−1m√

(d̃TV−1d̃)(mTV−1m)
(12)

Similarly, we can define a whitened RDM Pearson correlation, simply by first
subtracting the mean of data (d̄) and model (m̄) RDM.

rw =
(d̂− d̄)TV−1(m− m̄)√

((d̂− d̄)TV−1(d̂− d̄))((m− m̄)TV−1(m− m̄))
(13)

Influence of RDM whitening on model comparisons

To determine the influence of RDM whitening in the context of realistic model
comparisons, we simulated data using the designs of three published fMRI experiments
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Fig 6. Model selection accuracy for different representational distance estimators and
measures of RDM similarity. A theoretical upper bound on model selection accuracy is provided
by PCM (black dotted line). Model decisions are either based on RDM correlations with biased
distance estimators (blue) or on RDM cosine angles with unbiased (crossvalidated) distance estimators
(red). Both RDM correlations and RDM cosine similarity can be performed in original (solid line) or in
whitened space (dashed line). Different panels show simulations for three experimental designs with
different numbers of experimental conditions K and different models.

and evaluated the associated models, all of which made quantitative predictions about
representational distances (Fig. 6). The first two experiments measured activation
patterns associated with 5 (Exp 1) or 31 (Exp 2) different finger movements in primary
motor cortex [9]. The associated models where derived either from the structure of the
associated muscle activity or from the natural statistics of movement. The third
experiment measured the activation patterns elicited by 92 images showing a range of
animate and inanimate objects in human inferior temporal cortex. The models were
derived from the 8 layers of a neuronal network [19].

As for Figure 4, we simulated data from each model, using different signal-to-noise
levels. We then used RDM correlations or whitened RDM correlations, as well as cosine
similarity or whitened cosine similarity to find the best model. For each method we
recorded the number of correct model decisions. In addition to the RSA-based methods,
we also used Pattern Component Modeling (PCM) [14,18], which directly compares the
marginal likelihood of the data given the models, under the assumption that both signal
and noise are normally distributed. For such data, PCM implements the likelihood-ratio
test between models. For the case of our simulations, where all assumptions hold, PCM
therefore implements the optimal inference procedure [13] and provides an upper
performance bound for any model-comparison technique.

Across the three different experimental simulations, the simple RDM correlation or
RDM cosine similarity (Fig. 6, solid lines) performed clearly sub-optimally as compared
to PCM. Taking the covariance structure of the distances into account (dashed lines)
substantially improved model decisions. Indeed, in many cases, the performance of RSA
inference was close to optimal. This suggests that accounting for the signal-dependent,
second half of the covariance formula (Eq. 28, 30) would not improve inference much
further. Instead, these simulations indicate that the observed sub-optimal performance
was mostly caused by the assumption that the distances are uncorrelated, rather than
by the assumption that the distances have the same variance.

Factors influencing the advantage of RDM whitening

From the simulations in Figure 6, it appears that the importance of taking the
covariance structure of the distances estimates into account is more pronounced for
experiments with more conditions. To test this idea directly, we simulated data for Exp
1 with 5 conditions and 32 partitions. We then reanalyzed the data, relabeling the
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Fig 7. Model selection accuracy for normal and whitened RDM cosine similarity as a
measure of RDM fit. Model selection accuracy is greater for the whitened unbiased cosine similarity
(WUC) than for the normal RDM cosine similarity based on unbiased distance estimates. The benefit
of whitening grows with the number of experimental conditions. Dashed line indicates performance of
likelihood-ratio test as implemented in Pattern component analysis (PCM),

measures from even partitions as conditions 1-5, and from the odd partitions as
condition 6-10. This increases the number of conditions to 10 and reduces the number
of partitions to 16. We repeated this procedure two times more, finally ending up with
40 conditions and 4 partitions. As the underlying data is the same, the performance of
PCM was relatively constant across these situations. With increasing number of
conditions, however, the advantage of using WUC over the normal RDM cosine
similarity increases (Fig. 7). This may appear at first somewhat counter-intuitive, as
the proportion of uncorrelated distances pairs in the RDM increases with increasing
number of conditions. However, the structure of the covariance matrix (Fig. 5b) is such
that the anisotropy increases with the number of conditions. The axis of highest
variability of the distance estimates is always in the direction of the average of all
distances. This direction is associated with an eigenvalue of K. There are also K − 1
orthogonal directions with an eigenvalue of K/2, and K(K − 3) directions with an
eigenvalue of 1. Thus, the ratio of the larger to the smaller eigenvalues of V (a measure
of anisotropy) scales linearly with the number of conditions. That means that with 40
conditions, the all-mean dimension has 40 times higher variability than most of the
other directions. When ignoring the covariance structure, all dimensions are counted to
be equally important, which leads to sub-optimal inferences.

This consideration also implies that for some model comparison problems, taking into
account the covariance will not change the inference. This is the case when two models
differ only on dimensions of model space that can be measured with equal variability
(i.e., have the same eigenvalue in V). The two models compared in Fig. 4a are such an
example. Most model comparison problems, however, will improve, and inference will
never get worse. Thus, using whitened RDM similarities is always recommended.

Interpretation of the WUC

An important consideration in the interpretation of the WUC is that its expected value
will be zero if and only if all distances that are systematically larger than zero in the
data are predicted to have a distance of zero in the model. That is, a WUC of zero
shows that there is no above-chance linear prediction possible from the features of the
model to the activity patterns (see Fig. 1).
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Therefore, any model that predicts a positive distance for any pair of conditions that
are distinct in the data, will have a WUC > 0. In contrast, the traditional RDM
Pearson correlation will be zero when there is no systematic relationship between
measured and predicted dissimilarities. As a consequence, the values of the WUC tend
to be substantially higher than RDM correlations, often close to 1 for all models.

To obtain a baseline that would be equivalent to a correlation of zero, it is therefore
often useful to compare all models to a null-model that predicts all conditions as equally
distant from each other. This approach combines the interpretability of the RDM
correlation with the increased power of the WUC.

Extension of the WUC to flexible RDM models

In many applications, we want to fit and evaluate flexible models, in which the vector of
predicted dissimilarities depends on a vector of parameters θ. In some cases the
predicted RDM is a weighted sum of different model components, for example the
different layers of a deep neuronal network [19,20]. In other cases, the predicted
distances are a non-linear function of the model parameters [18], for example when
parameterizing the width of a tuning function in a population-receptive-field model [21].
In all of these cases, we can take into account the covariance of the dissimilarity
estimates by minimizing the following loss function:

J(θ) = (d−m(θ))TV−1(d−m(θ)). (14)

Equivalently, we can whiten the estimation error, by pre-multiplying both estimated
distances and the model prediction with V−

1
2 , and then use standard least squares

approaches.

Relationship to other multivariate dependence measures

Interestingly, the whitened RDM cosine similarity is related to other statistical
measures of multivariate dependence. If a whitened RDM cosine similarity is calculated
from biased distance estimates, and if we assume i.i.d. measurement noise, it is identical
linear Centered Kernel Alignment (CKA, [12, 22]), also known as the RV coefficient [11].
The CKA is a normalized version of the Hilbert-Schmidt independence criterion
(HSIC [23]) between two sets of multivariate patterns. In general, the HSIC is the
dot-product between the elements of two similarity (or kernel) matrices. Here we have
the special linear case, were the similarity is the dot product of the two pattern vectors.

Let A and B be two matrices, with the same number K of rows, containing patterns
for K observations (e.g., trials or time points). To make the mean of each column of
these matrices equal to zero, we can pre-multiply the patterns with the centering matrix
H = IK − 1K/K. We then can define the centred second moment matrix of the
patterns as

GA = HAATHT /P GB = HBBTHT /P. (15)

For the linear case, the HSIC is the dot product between the elements of the two
second-moment matrices.

HSICA,B = vec(GA)Tvec(GB) (16)

The linear CKA is the normalized version of this quantity, just like the correlation
coefficient is a normalized version of the covariance.

CKA =
HSICA,B√

HSICA,AHSICB,B

(17)
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To show the equivalence of Eq. 12 (using biased distance estimates) and Eq. 17, we
can express the vector of squared distances dA as a linear combination of the elements
of the second moment matrix,

dj = (bi − bk)(bi − bk)T (18)

= Gi,i + Gk,k −Gi,k −Gk,i, (19)

which we can write more succinctly using a properly defined linear transformation
matrix Td, such that

dA = Tdvec(GA). (20)

Given the structure, we can verify that

vec(GA)Tvec(GB) = dA
T (TdT

T
d )−1dB

= dA
T (CCT ◦CCT )−1dB

= dA
T (cV)−1dB.

(21)

A more intuitive explanation of this equivalence is that all unique elements of an
estimate of G are mutually uncorrelated, if the true G = 0 and ΣK = Iσ2 (Eq. 36).
The covariance-structure of the distances is then simply induced by the fact that some
of the distances share common elements of the second moment matrix, with the
covariance structure determined (up to a constant) by TdT

T
d .

While the whitened RDM cosine similarity using biased distance estimates is
equivalent to the linear CKA or the RV coefficient, the whitened unbiased RDM cosine
similarity (Eq. 6, WUC) defines the unbiased version of this coefficient. It can be
computed based on Eq. 16 and 17, replacing G with an unbiased estimate for the
second moment matrix.

G̃ =
1

M(M − 1)

∑
m

∑
n 6=m

HB̂mB̂T
nHT /P (22)

Discussion

RSA provides an intuitive and flexible way of performing inference on representational
models (i.e., on models that describe the relationship between high-dimensional activity
patterns). There are, however, numerous different dissimilarity measures and ways of
comparing measured RDMs to model RDMs, and the optimal way of implementing RSA
remains a matter of debate [8, 18]. In this paper, we derive an analytical expression for
the mean and the covariance of the biased and unbiased estimates of squared Euclidean
and Mahalanobis distances. This theoretical result leads to two important conclusions.

First, we show that standard distance estimates are positively biased, and that this
bias depends on the variances and covariances of the measured activity patterns (ΣK).
If the measurement noise is i.i.d. across trials, the bias will be the same across all
distance estimates, and can be taken into account by ignoring the mean distance in
subsequent model comparisons (for example by using the Pearson or rank correlation).
If, however, one condition is measured with higher variance (for example because there
were different numbers of repetitions or error trials had to be discarded), then all
distances involving this condition will tend to be higher. If two conditions
systematically follow each other, such that they are measured with a positive covariance,
their dissimilarity will be systematically lower than two conditions measured with
independent noise. These biases can translate into biases in model selection [10]. To
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avoid such errors, we can remove the bias in the estimation of the distance using
crossvalidation. This approach has the substantial advantage that unequal measurement
errors across conditions can no longer bias model decisions. However, removing the bias
of the distance estimates comes at a cost: the variance of unbiased distance estimate is
slightly higher than the variance of biased distance estimates, by factor M/(M − 1).
Thus, when using unbiased estimates, a large number of independent partitions (M) is
desirable.

Second, we show that dissimilarity estimates within an RDM are systematically
correlated with each other. In a previous paper, we had shown that model selection
using the RDM cosine similarity or RDM correlation was less accurate than PCM [18].
Here we show that taking the covariance structure of the dissimilarity estimates into
account improves our power to adjudicate between models. This improvement can even
be achieved when using the covariance structure predicted under the assumption that all
true distances are zero, which dramatically simplifies the procedure, avoiding iterative
calculation of the covariance matrix. The power achieved with the whitened RDM cosine
similarity (Eq. 12) or the whitened RDM Pearson correlation (Eq. 13) is close to the
theoretical optimum, as achieved with the likelihood-ratio test implemented by PCM.

Taken together, these two insights suggest the use of unbiased distance estimates
combined with the whitened cosine similarity to compare RDMs. We call this new
approach the whitened unbiased RDM cosine similarity (WUC). It has important
connections to the linear CKA [12,22]) and RV coefficient [11], but extends these two
traditional approaches by removing the biasing influence of measurement noise by using
a crossvalidated estimate of the distances (Eq. 6) or second moment matrix (Eq. 22).

When should the new criterion for RDM model comparison be used? The optimal
method of course always depends on the data and models that need to be compared
(Figure 8). The first decision is whether the models are meant to predict the
dissimilarities quantitatively (ratio scale) or only their ranks (ordinal scale).
Quantitative predictions can often be derived if we have an explicit model of the shape
of the underlying activity profiles. The distribution of activity profiles may also be
predicted from activities in an artificial neural network model [19], directly from
perceptual judgements [24], or the statistics of external training data [9]. In other cases,
the model may only predict the rank ordering of the dissimilarities, but not by how
much one dissimilarity is larger than another. In such cases, rank-correlations are most
appropriate [8]. While this approach can be statistically less powerful [18], it is robust
against any possible monotonic transformation of the dissimilarities.

The next decision is whether the activity patterns can be estimated independently
and with approximately the same variance across all partitions. If this is not surely the
case, then crossvalidated, unbiased distance estimates should be used. This is
important, because the bias on the standard Euclidean or Mahalanobis distances will be
structured, if the noise is not i.i.d., such that the model comparison will be biased.
Even in situations in which the measured activity-pattern estimates can be assumed to
be i.i.d., the unbiased estimation approach can be more powerful than using the biased
estimates and Pearson’s correlation. This is because the meaningful zero point (which
indicates that there is no pattern difference) can help distinguish models. Which
approach is better depends on the number of partitions, the signal-to-noise ratio, the
experimental conditions, and the structure of the models (Fig. 4). Overall, however, the
increased robustness of violations of noise assumptions will generally outweigh the cost
of increased variance, especially if the number of partitions is large.

Whether biased or unbiased distance estimates are used, RDMs should always be
compared using whitened RDM correlations or cosine similarities. These measures
perform often substantially better, but never worse than standard approaches. Because
we can approximate the true covariance structure well using the covariance structure
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Fig 8. Decision tree for the selection of a dissimilarity measure and model selection
approach for RSA. Rank correlations (Kendall’s tau II or Spearman’s correlation) are most
appropriate if the models do not make quantitative predictions about the size of the distances.
Unbiased dissimilarity estimates should always be used, if the activity estimates within a data partition
are not measured independently and with the equal variance. Model comparisons should always be
conducted in a whitened RDM space.

under the assumption that there is no true signal, the approach can be implemented in
a computationally efficient manner. Thus, we do not see any reason to use standard
Pearson correlation or cosine similarity for RDM comparison.

Taken together, we believe that the WUC provides an important new measure for
RDM comparison that should become standard for many applications. The new
measure extends the linear centered kernel alignment (CKA) [12,22] and RV
coefficient [11] by removing the biasing influence of measurement noise. Furthermore, it
provides a way of incorporating a known noise covariance of the data for optimal
inference. In the quadratic form in Eq. 21,the term CCT ◦CCT can simply be replaced
with CΣKCT ◦CΣKCT , ensuring that uneven measurement noise across conditions is
being taken into account during model comparison.

The WUC and whitened RDM Pearson correlation have been implemented in a new
Python-based RSA toolbox, released by the team of authors [25]. We hope that the
results presented in this paper, together with the accessible implementation, will
accelerate the adoption of what we consider to be current best practice in RSA.

Methods

Extended definitions

To derive the mean and full variance-covariance matrix of the distance estimates, it is
useful to make some more general definitions and assumptions. We assume that each
measured activity profile (column of B̂m) has covariance ΣK between conditions. For
fMRI, this correlation structure is caused by the sluggish nature of the hemodynamic
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response, as well from the low-frequency noise inherent to the measurements. A
reasonable estimate of ΣK can be derived directly from the first level linear model (Eq.
1, [26]). For other modalities, it may be reasonable to assume independence of
measurements.

We also assume that each measured activity pattern (row of B̂m), has a covariance
of ΣP between channels. Variability of fMRI, EEG, MEG measurements clearly shows
substantial spatial structure. Again, this noise structure can usually be estimated from
the residuals of the first-level linear model (see Mahalanobis distance). To remove the
redundancy of ΣK and ΣP in terms of the overall scaling of the noise, we restrict
trace(ΣP)/P = 1.

For the derivation of the full covariance matrix of distance estimates, we need to
make the slightly more restrictive assumption that B̂m has a matrix-normal distribution
across partitions m. While this assumption is reasonable for fMRI data, it is
recommended to apply the square-root transform to neuronal spiking data to make it
conform to the normal assumption [27].

To derive distances between conditions in a matrix notation, we define a D ×K
contrast matrix C. The kth row of this matrix contains a 1 and a −1 for the two
conditions that are contrasted in the kth distance, all other entries are 0. The product
CB then results in a D × P matrix that contains the pattern differences δk = bi − bj

in its rows. We define:

∆ ≡ CB BTCT /P (23)

The diagonal of ∆ contains the squared distances dk (divisively normalized by the
number of channels). On the basis of ΣK , we can also define the D ×D
variance-covariance matrix of the pattern-difference estimates (CB̂m):

Ξ ≡ Var(C B̂m) = CΣKCT . (24)

Bias of distance estimates

Eq. 5 can be derived by expressing the estimated pattern difference (δ̂k,m) as the sum
of the true pattern-difference vectors δk and the measurement noise (ξk,m). By
substituting this into Eq. 4 and taking the expected value (E), it is straightforward to
show that the distance estimator is positively biased:

E(d̂k) = E

(
1

M2

∑
m

∑
n

(δk + ξk,m)(δk + ξk,n)T /P

)

=

(
δkδ

T
k + E

(∑
m

ξk,mξ
T
k,m/M

))
/P

= dk + Ξkk/M.

(25)

The bias arises by multiplying the noise with itself (i.e. for the cases of m = n). For
all other cases (m 6= n), the noise terms are independent, and the expected value of
their product is zero.

Variance of distance estimates

An analytical expression for the variance-covariance matrix of the vector of distance
estimates can be derived using the following general result (see Appendix B1, B2 for
details). If the matrix A has matrix normal distribution MN (B,Ξ,Σ), then the
diagonal of AAT has the expected value and variance:
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E(diag(AAT)) = diag(BBT + tr(Σ)Ξ) (26)

Var(diag(AAT)) = 4BΣBT ◦Ξ + 2tr(ΣΣ)(Ξ ◦Ξ), (27)

where ◦ is the element-by-element multiplication of two matrices, and tr() is the trace of
a matrix. When setting A to the mean of the pattern differences across partitions, we
can easily derive the variance of the biased distance estimate (Eq. 4).

Var(d̂) =
1

P 2

(
2tr(ΣPΣP )

M2
Ξ ◦Ξ +

4P

M
∆∗ ◦Ξ

)
(28)

∆∗ = CBΣPBTCT (29)

The expression for the variance of the unbiased estimate of the distance (Eq. 6) can
be derived by taking the covariance of all pairs of partitions into account (see Appendix
B3).

Var(d̃) =
1

P 2

(
2tr(ΣPΣP )

M(M − 1)
Ξ ◦Ξ +

4P

M
∆∗ ◦Ξ

)
(30)

Intuitively the variances of distance estimates come from the product of signal and
noise (averaged over M partitions) and product of noise with noise (averaged over M2

pairs of partitions for the biased distance estimate and over M(M − 1) pairs of
partitions for the unbiased estimate).

Spatial pre-whitening and Mahalanobis distances

In the result section, we focus on biased and unbiased estimates of the Euclidean
distance. Previous work [6], however, demonstrates clearly that taking into account the
spatial covariance structure of fMRI noise (ΣP ) can increase the reliability of distance
estimates.

In the simplest case, we ignore the correlation between voxels and simply divide the
activity estimates for each voxel by the square root of the diagonal elements of ΣP .
This step already prevents noisy voxels to influence the distance estimate overly much.

Additionally, we can use multivariate pre-whitening, i.e. post-multiplication of Σ
−1/2
P .

This step gives less weight to the information contained in two voxels that are highly
correlated in their random variability than to information contained in two uncorrelated
voxels. Calculating Euclidean distances on multivariate pre-whitened data is equivalent
to calculating a Mahalanobis distance.

In practice, we do not have access to the voxel-by-voxel covariance matrix. However,
we can use the residuals Rm from the first-level general linear model to derive an
estimate,

Σ̂P =
1

M(Nm −Km)

M∑
m=1

RT
mRm, (31)

where Nm is the number of observations, and Km is the number of regressors of
interest per partition. Oftentimes, we have the case that P > N , which renders the
estimate non-invertible. Even with N > P , it is usually prudent to regularize the
estimate, as it stabilizes the distance estimates. A practical way of doing this is to shrink
the estimate of the covariance matrix to a diagonal version of the raw sample estimate:

Σ̃P = hdiag(Σ̂P ) + (1− h) Σ̂P . (32)
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The scalar h determines the amount of shrinkage, with 0 corresponding to no
shrinkage and 1 to only using the diagonal of the matrix (univariate prewhitening).
Estimation methods for the optimal shrinkage coefficient have been proposed [28], but
in practice values in the range of h = [0.2− 0.4] perform well for fMRI data. The

estimate is then used to obtain a spatially prewhitened versions of B̂m:

B̂∗m = B̂mΣ̃
−1/2
P (33)

Biased and unbiased estimates of the Mahalanobis distance can then be calculated
via Eq. 5, 6, using B̂∗m instead of B̂m. To obtain a full expression of the
variance-covariance matrix of this distance, we need to know the mean and covariance of
the pre-whitened data. If whitening would work perfectly, the data would be
independent across voxels. However, given that we operate with an estimate of ΣP , this
is not the case. Rather, the pre-whitened data will have matrix-normal distribution

B̂∗m ∼MN (BΣ̃
−1/2
P ,ΣK ,ΣR) (34)

ΣR = Σ̃
−1/2
P ΣP Σ̃

−1/2
P (35)

The covariance matrix of these distance estimates is given by Eq. 28, 30, with B

replaced by BΣ̃
−1/2
P , and ΣP with ΣR. The covariance structure under the assumption

that B = 0, however, will be the same as for the Euclidean distance - therefore the
whitened RDM correlation and the WUC can be use equivalently for the biased and
unbiased estimates of the Mahalanobis distance.

Simulations

To evaluate different ways of comparing RDMs, we conducted a range of simulations,
each with a known ground-truth. For the results shown in Figure 4, we used 2 simple
models for each simulation, each predicting the dissimilarity patterns between 4
conditions. In each simulation run, we generated artificial data from Eq. 1 for 2-12
partitions from one of the models. The variance of the noise of the simulation was set to
be proportional to the number of partitions, such that the variance of the average
activity patterns was always constant. The noise was assumed to be independent across
the P = 50 voxels, In simulation for Fig 4a, the measurement noise was correlated for
neighboring conditions with r = 0.15, for all other simulations it was independent. We
then computed either biased or unbiased distance estimates, and finally compared the
simulated RDM to the two candidate models using different criteria. We then counted
how often each method decided for the true (i.e., data generating) model.

For the simulations shown in Figure 6, we used three example experiments from
published fMRI studies. The first two examples come from a paper investigating the
representational structure of finger movements in primary motor and sensory cortex [9].
In Experiment 1, the activity patterns for K=5 fingers were measured. The resultant
RDM was then compared to two models, one that predicts the similarity structure
based on the natural statistics of movement, the other that predicts the structure based
on the similarity of muscle activity patterns. The RDM correlation between the two
models was relatively high (r = 0.85).

The second example comes from experiment 3 in the same paper, this time looking
at 31 different finger movements, which span the whole space of possible “piano-chord”
combinations. Again, the predictions of the natural statistics and muscle activity model
were compared.

The third example uses an experiment investigating the response of the human
inferior temporal cortex to 96 images, including animate and inanimate objects [19].
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The model predictions are derived from a convolutional deep neural network model –
with each of the 7 layers providing a separate representational model. The bitmap
images were presented to the deep neural network and the internal activity patterns
used as representational models.

All data sets were simulated with 8 runs, 160 voxels, and independent noise on the
observations. The noise variance was set to σ2 = 1. We first normalized the model
predictions, such that the norm of the predicted squared Euclidean distances was 1. We
then varied the strength of the signal systematically from 0 (pure noise data) to a level
that achieved reasonably high accuracy. We generated 3,000 data sets for each
experiment, parameter setting, and model. For Experiment 3, where there were 7
alternative models, we generated data sets from each of the models. We then decided
whether the data was better fit by the data-generating or one of the alternative models.
Accuracy was then averaged over all possible model pairs. Thus, for all 3 Experiments,
chance performance was at 0.5.

References

1. Kriegeskorte N, Diedrichsen J. Peeling the Onion of Brain Representations.
Annual Review of Neuroscience. 2019;42(1):407–432.
doi:10.1146/annurev-neuro-080317-061906.

2. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed
and overlapping representations of faces and objects in ventral temporal cortex.
Science. 2001;293(5539):2425–2430. doi:10.1126/science.1063736.

3. Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast Readout of Object Identity
from Macaque Inferior Temporal Cortex. Science. 2005;310(5749):863–866.
doi:10.1126/science.1117593.

4. Kriegeskorte N, Mur M, Bandettini PA. Representational similarity analysis -
connecting the branches of systems neuroscience. Frontiers in Systems
Neuroscience. 2008;2. doi:10.3389/neuro.06.004.2008.

5. Edelman S, Grill-Spector K, Kushnir T, Malach R. Toward direct visualization of
the internal shape representation space by fMRI. Psychobiology.
1998;doi:10.3758/BF03330618.

6. Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. Reliability of
dissimilarity measures for multi-voxel pattern analysis. NeuroImage. 2016;137.
doi:10.1016/j.neuroimage.2015.12.012.

7. Bobadilla-Suarez S, Ahlheim C, Mehrotra A, Panos A, Love BC. Measures of
Neural Similarity. Computational Brain & Behavior.
2019;doi:10.1007/s42113-019-00068-5.

8. Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. A
Toolbox for Representational Similarity Analysis. PLOS Computational Biology.
2014;10(4):e1003553. doi:10.1371/journal.pcbi.1003553.

9. Ejaz N, Hamada M, Diedrichsen J. Hand use predicts the structure of
representations in sensorimotor cortex. Nat Neurosci. 2015;18(7):1034–1040.
doi:10.1038/nn.4038.

10. Cai MB, Schuck NW, Pillow JW, Niv Y. Representational structure or task
structure? Bias in neural representational similarity analysis and a Bayesian

November 25, 2020 20/25



method for reducing bias. PLOS Computational Biology. 2019;15(5):e1006299.
doi:10.1371/journal.pcbi.1006299.

11. Robert P, Escoufier Y. A Unifying Tool for Linear Multivariate Statistical
Methods: The RV- Coefficient. Applied Statistics. 1976;doi:10.2307/2347233.

12. Kornblith S, Norouzi M, Lee H, Hinton G. Similarity of Neural Network
Representations Revisited. arXiv:190500414 [cs, q-bio, stat]. 2019;.

13. Neyman J, Pearson ES. On the problem of the most efficient test of statistical
hypotheses. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 1933;231:289–337.
doi:doi:10.1098/rsta.1933.0009.

14. Diedrichsen J, Ridgway GR, Friston KJ, Wiestler T. Comparing the similarity
and spatial structure of neural representations: A pattern-component model.
NeuroImage. 2011;55(4). doi:10.1016/j.neuroimage.2011.01.044.

15. Diedrichsen J, Yokoi A, Arbuckle SA. Pattern component modeling: A flexible
approach for understanding the representational structure of brain activity
patterns. NeuroImage. 2017;doi:10.1016/j.neuroimage.2017.08.051.

16. S K, J K, S J, I T, C F B, H J B, et al. Revealing the neural fingerprints of a
missing hand. eLife. 2016;doi:10.7554/eLife.15292.

17. Wandell BA, Dumoulin SO, Brewer AA. Visual Field Maps in Human Cortex.
Neuron. 2007;56(2):366–383. doi:10.1016/j.neuron.2007.10.012.

18. Diedrichsen J, Kriegeskorte N. Representational models: A common framework
for understanding encoding, pattern-component, and representational-similarity
analysis. PLOS Computational Biology. 2017;13(4):e1005508.
doi:10.1371/journal.pcbi.1005508.

19. Khaligh-Razavi SM, Kriegeskorte N. Deep supervised, but not unsupervised,
models may explain IT cortical representation. PLoS Comput Biol.
2014;10(11):e1003915. doi:10.1371/journal.pcbi.1003915.

20. Khaligh-Razavi SM, Henriksson L, Kay K, Kriegeskorte N. Fixed versus mixed
RSA: Explaining visual representations by fixed and mixed feature sets from
shallow and deep computational models. J Math Psychol. 2017;76(Pt B):184–197.
doi:10.1016/j.jmp.2016.10.007.

21. Dumoulin SO, Wandell BA. Population receptive field estimates in human visual
cortex. Neuroimage. 2008;39(2):647–660. doi:10.1016/j.neuroimage.2007.09.034.

22. Cristianini N, Kandola J, Elisseeff A, Shawe-Taylor J. On kernel target alignment.
Studies in Fuzziness and Soft Computing. 2006;doi:10.1007/10985687 8.

23. Gretton A, Bousquet O, Smola A, Schölkopf B. Measuring statistical dependence
with Hilbert-Schmidt norms. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); 2005.

24. Sormaz M, Watson DM, Smith WAP, Young AW, Andrews TJ. Modelling the
perceptual similarity of facial expressions from image statistics and neural
responses. NeuroImage. 2016;doi:10.1016/j.neuroimage.2016.01.041.

November 25, 2020 21/25
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A Symbol Table

Symbol Size Meaning
K 1 Number of conditions or columns in design matrix
P 1 Number of channels or voxels
M 1 Number of independent data partitions
D 1 Number of distances, usually K(K − 1)/2
Nm 1 Number of activity measurements for partition m
Ym Nm × P Activity measurements for partition m
Xm Nm ×K Design matrix for partition m
B K × P True activity patterns
bi 1× P True activity patterns for condition i

B̂m Nm × P Estimated activity patterns for partition m

ΣK K ×K Variance-covariance matrix of B̂m across conditions

ΣP P × P Variance-covariance matrix of B̂m across channels or voxels
δk 1× P True pattern difference for condition pair k
dk 1 True distance for condition pair k
d D × 1 Vector of all pairwise distances

d̂ D × 1 Biased distance estimates

d̃ D × 1 Unbiased distance estimates
∆ D ×D Matrix of inner products of all pattern differences
Ξ D ×D Variance-covariance matrix of all estimated pattern differences
V D ×D Variance-covariance matrix of distance estimates

Table 1. Table of symbol sizes and meanings. Size is given in number of rows × number
of columns. For consistency of notation, vectors are defined to be in either row or column
orientation.

B Derivation of variance-covariance matrix of the
distance estimate

B.1 Expectations of products of normal random variables

The variance of distance estimates can be derived from the basic expectations of products of
normally distributed variables. If u, v, x, y are jointly normally distributed variables, then we
have the following general expectations:
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E (xy) = E(x)E(y) + cov(x, y)

cov (xy, uv) = E(x)E(u)cov(y, v) + E(x)E(v)cov(y, u)

+ E(y)E(u)cov(x, v) + E(y)E(v)cov(x, u)

+ cov(x, u)cov(y, v) + cov(x, v)cov(y, u)

(36)

B.2 Expectations of the product of normal matrices

From Eq. 36, we can derive the basic expectations on the product of normal matrices. Let us
assume that vector x has multi-variate normal distribution with mean µ and
variance-covariance matrix V. To derive Eq. 28 and 30, we require the following results for the
outer product xxT . The mean is given by

E(xxT) = µµT + V. (37)

The variance-covariance matrix of the diagonal of xxT is

Var(diag(xxT)) = 4µµT ◦V + 2(V ◦V) (38)

These results can be easily extended to the distribution of the matrix product XXT , where
X is a random N × P matrix with independent normally-distributed columns, i.e. with matrix
normal distribution X ∼MN (M,V, I).

E(XXT) = MMT + PV (39)

The full variance-covariance matrix of the diagonal d of XXT is

Var(diag(XXT)) = 4MMT ◦V + 2P(V ◦V). (40)

Finally, we need to generalize these results to a situation, where the columns of X are not
independent, but have element-wise covariance of Σ. Thus, we are interested in the joint
distribution of the elements of the quadratic form XXT , where X has matrix normal
distribution X ∼MN (M,V,Σ).

E(XXT) = MMT + tr(Σ)V (41)

Var(diag(XXT)) = 4MΣMT ◦V + 2tr(ΣΣ)(V ◦V) (42)

From this result, we can obtain Eq. 28 by considering that the mean of CB̂m across
partitions has variance Ξ/M .

B.3 Averaging across partitions

To derive the variance of the unbiased distances, we need to take into account the averaging of
the estimated difference across the M different crossvalidation folds. While data from different
partitions can be assumed to be independent, the inner products across crossvalidation folds
are not. This is because the partitions from one crossvalidation fold will be again included in
other folds. The two pattern differences that enter the product in Eq. 6 come from a single
partition (that is, A = m), or from the set of all other partitions (that is, B = M \m, which
we will denote here in short by \m.

As a shorthand for the covariance between difference estimates i and j that are based on
the set of partitions A and B, we introduce the symbol

ΞA,B
i,j = Cov

(
δ̂i,A, δ̂j,B

)
. (43)

This is the covariance for each individual voxel. We now exploit the bilinearity of the
covariance operator, that is,
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Cov
(∑

m

xm,
∑
n

yn
)

=
∑
m

∑
n

Cov
(
xm, yn

)
, (44)

to obtain the following general result:

Cov(d̃i, d̃j) =
1

M2P 2

∑
m

∑
n

Cov
(
δ̂i,mδ̂

T

i,\m, δ̂j,nδ̂
T

j,\n
)

=
1

M2P 2

∑
m

∑
n

PδiΣP δ
T
j

(
Ξ
\m\n
i,j + Ξ

\mn
i,j + Ξ

m\n
i,j + Ξmn

i,j

)
+ tr

(
ΣPΣP

)(
Ξmn

i,j Ξ
\m\n
i,j + Ξ

m\n
i,j Ξ

\mn
i,j

)
=

1

P 2

{
PδiΣP δ

T
j Si,j + tr

(
ΣPΣP

)
Ni,j

}
(45)

where

Si,j =
1

M2

∑
m

∑
n

{
Ξ
\m\n
i,j + Ξ

\mn
i,j + Ξ

m\n
i,j + Ξmn

i,j

}
(46)

and

Ni,j =
1

M2

∑
m

∑
n

{
Ξmn

i,j Ξ
\m\n
i,j + Ξ

m\n
i,j Ξ

\mn
i,j

}
. (47)

This is the most general expression of the variance of the unbiased distance, which can even
be used when the covariance structure of different partitions (ΣK) differs from each other (see
Appendix C).

For the case in which the difference estimates from all M partitions can be assumed to have
the same covariance, that is, Ξi,j ≡ Cov(δ̂i,m, δ̂j,m), we can simplify the expression
dramatically. In this instance the best estimate of δ\m is the average of all partitions except m:

δ̂\m =
∑
n6=m

δ̂n/(M − 1). (48)

Accordingly, for n 6= m, we have

ΞA,B =



Ξ if A = m, B = m
0 if A = m, B = n
0 if A = m, B = \m
Ξ/(M − 1) if A = \m, B = \m
Ξ/(M − 1) if A = m, B = \n
(M − 2)Ξ/(M − 1)2 if A = \m, B = \n

(49)

.
Substituting the elements of the appropriate representations of ΞA,B into Eq. 46, 47 and

summing up, we have

Si,j =
1

M2

{
M
( Ξi,j

M − 1
+ Ξi,j

)
+ M(M − 1)

( (M − 2)Ξi,j

(M − 1)2
+

2Ξi,j

M − 1

) }
=

1

M2
Ξi,j

{ M

M − 1
+ M +

M(M − 2)

M − 1
+ 2M

}
=

4

M
Ξi,j ,

Ni,j =
{MΞi,jΞi,j

M − 1
+

M(M − 1)Ξi,jΞi,j

(M − 1)2

}
=

2 Ξi,jΞi,j

M(M − 1)
,

(50)
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and

Cov(d̃i, d̃j) =
1

P 2

(
4
PδiΣP δ

T
j

M
Ξi,j +

2tr
(
ΣPΣP

)
M(M − 1)

Ξi,jΞi,j

)
. (51)

Finally, on writing the desired complete covariance matrix using element-by-element
multiplication (Hadamard product), we obtain the result given in Eq. 30.

C Unbalanced designs

In unbalanced designs, the noise covariance ΣK is different across different partitions - i.e.
each partition has their own covariance matrix Σm

K . In the calculation of the distances, this
ideally should be taken into account. To simplify this problem we here assume that all signals
are zero, as we did for the derivation of the WUC.

Given the zero mean assumption and independent runs, the product of patterns from one
pair of partitions, is uncorrelated to the product of two patterns from any other pair of
partitions (Eq.36). Thus, for both biased and unbiased distance estimates, the optimal pooling
of the estimates from the pairs is their precision weighted average.

The distance estimate from single pair of partitions d̂m,n = diag(CB̂mB̂T
n C)/P has the

following expected value (E) and covariance (Var):
If m 6= n:

E(d̂m,n) = 0 (52)

Var(d̂m,n) = tr(ΣP ΣP )Ξm ◦Ξn = tr(ΣP ΣP )(CΣm
k CT) ◦ (CΣn

kCT) (53)

If m = n:
E(d̂m,m) = tr(ΣP ΣP )diag(CΣm

k CT) (54)

Var(d̂m,m) = tr(ΣP ΣP )Ξm ◦Ξn = tr(ΣPΣP)(CΣm
k CT) ◦ (CΣm

k CT) (55)

Using these formulas we derive an optimal unbiased estimate using precision weighting:

d̃ =

∑
m

∑
n6=m

Var−1(d̂m,n)

−1∑
m

∑
n 6=m

Var−1(d̂m,n)d̂m,n (56)

The covariance matrix of this combined estimate is then:∑
m

∑
n 6=m

Var−1(d̂
m,n

)

−1

(57)
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