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Abstract

Deep neural networks (DNNs) are promising models of the cortical computations supporting 

human object recognition. However, despite their ability to explain a significant portion of 

variance in neural data, the agreement between models and brain representational dynamics is 

far from perfect. We address this issue by asking which representational features are currently 

unaccounted for in neural timeseries data, estimated for multiple areas of the ventral stream 

via source-reconstructed magnetoencephalography (MEG) data acquired in human participants 

(9 females, 6 males) during object viewing. We focus on the ability of visuo-semantic models, 

consisting of human-generated labels of object features and categories, to explain variance beyond 

the explanatory power of DNNs alone. We report a gradual reversal in the relative importance of 

DNN versus visuo-semantic features as ventral-stream object representations unfold over space 

and time. While lower-level visual areas are better explained by DNN features starting early in 

time (at 66 ms after stimulus onset), higher-level cortical dynamics are best accounted for by 

visuo-semantic features starting later in time (at 146 ms after stimulus onset). Among the visuo-

semantic features, object parts and basic categories drive the advantage over DNNs. These results 

show that a significant component of the variance unexplained by DNNs in higher-level cortical 

dynamics is structured, and can be explained by readily nameable aspects of the objects. We 
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conclude that current DNNs fail to fully capture dynamic representations in higher-level human 

visual cortex and suggest a path toward more accurate models of ventral stream computations.
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vision; object recognition; features; categories; recurrent deep neural networks; source-
reconstructed MEG data

Introduction

When we view objects in our visual environment, the neural representation of these objects 

dynamically unfolds over time across the cortical hierarchy of the ventral visual stream. In 

brain recordings from both humans and nonhuman primates, this dynamic representational 

unfolding can be quantified from neural population activity, showing a staggered emergence 

of ecologically relevant object information such as facial features, followed by object 

categories, and then the individuation of these inputs into specific exemplars (Sugase et 

al., 1999; Hung et al., 2005; Meyers et al., 2008; Carlson et al., 2013; Clarke et al., 2013; 

Cichy et al., 2014; Isik et al., 2014; Ghuman et al., 2014; Hebart et al., 2018; Kietzmann et 

al., 2019b). These neural reverberations are thought to reflect the cortical computations that 

support object recognition.

Deep neural networks (DNNs) have recently emerged as a promising computational 

framework for modeling these cortical computations (Kietzmann et al., 2019a,b). DNNs 

explain significant amounts of variance in neural data obtained from visual cortex in both 

humans and nonhuman primates (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 

2014; Güçlü and van Gerven, 2015; Cichy et al., 2017; Bankson et al., 2018; Jozwik et al., 

2018; Groen et al., 2018; Bonner and Epstein, 2018; Schrimpf et al., 2018; Zeman et al., 

2020; Storrs et al., 2020b). The transformation of object representations from shallower 

to deeper layers of feedforward DNNs roughly matches the transformation of object 

representations observed in visual cortex as neural responses unfold over space and time 

(Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Cichy et al., 2017; 

Bankson et al., 2018; Jozwik et al., 2018; Zeman et al., 2020). Furthermore, DNNs that 

incorporate dynamics through recurrent processing provide additional explanatory power, 

possibly by better approximating the dynamic computations that the brain relies on for 

perceptual inference (O’Reilly et al., 2013; Liao and Poggio, 2016; Spoerer et al., 2017; 

Kubilius et al., 2018; Tang et al., 2018; Kar et al., 2019; Kietzmann et al., 2019a,b; Rajaei et 

al., 2019; Spoerer et al., 2020). However, DNNs still leave substantial amounts of variance 

in brain responses unexplained (Schrimpf et al., 2018; Groen et al., 2018; Bracci et al., 

2019; Kietzmann et al., 2019b), and differences among feedforward architectures are small 

(Jozwik et al., 2019a,b), even after training and fitting (Storrs et al., 2020b). This raises the 

question of what representational features are left unaccounted for in the dynamic neural 

data.

To address this question, we enriched our modeling strategy with visuo-semantic object 

information. By “visuo-semantic”, we mean nameable properties of visual objects. Our 

visuo-semantic models consist of object labels generated by human observers, describing 
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lower-level object features such as “green”, higher-level object features such as “eye”, and 

categories such as “face”. The visuo-semantic labels can be interpreted as vectors in a space 

defined by humans at the behavioral level. In contrast to DNNs, our visuo-semantic models 

are not image-computable. However, they provide unique benchmarks for comparison 

with image-computable models. Prior work indicates that visuo-semantic labels explain 

significant amounts of response variance in higher-level primate visual cortex (Tanaka, 

1996; Yamane et al., 2008; Freiwald et al., 2009; Issa and DiCarlo, 2012; Kanwisher et al., 

1997; Epstein and Kanwisher, 1998; Downing et al., 2001; Haxby et al., 2001; Kriegeskorte 

et al., 2008; Huth et al., 2012; Mur et al., 2012; Jozwik et al., 2016, 2018). Moreover, 

visuo-semantic models outperform DNNs (AlexNet (Krizhevsky et al., 2012) and VGG 

(Simonyan and Zisserman, 2014) architectures) at predicting perceived object similarity in 

humans (Jozwik et al., 2017). In addition, a recent functional magnetic resonance imaging 

(fMRI) study showed that combining DNNs with a semantic feature model is beneficial for 

explaining visual object representations at advanced processing stages of the ventral visual 

stream (Devereux et al., 2018). Given these findings, we hypothesized that visuo-semantic 

models capture representational features in ventral-stream neural dynamics that DNNs fail to 

account for.

We tested this hypothesis on temporally resolved magnetoencephalography (MEG) data, 

which can capture representational dynamics at a millisecond timescale. Human brain data 

acquired at this rapid sampling rate provide rich information about temporal dynamics, and 

by extension, about the underlying neural computations. For example, in a MEG study 

that used source reconstruction to localize time series to distinct areas of the ventral visual 

stream, time series analyses revealed temporal inter-dependencies between areas suggestive 

of recurrent information processing (Kietzmann et al., 2019b).

In this work, we used representational similarity analysis (RSA) to test both DNNs and 

visuo-semantic models for their ability to explain representational dynamics observed across 

multiple ventral stream areas in the human brain. As DNNs, we used feedforward CORnet-Z 

and locally recurrent CORnet-R, which are inspired by the anatomy of monkey visual cortex 

(Kubilius et al., 2018). As visuo-semantic models, we used existing human-generated labels 

of object features and categories (Jozwik et al., 2016). We analyzed previously published 

source-reconstructed MEG data acquired in healthy human participants while they were 

viewing object images from a range of categories (Kietzmann et al., 2019b; Cichy et al., 

2014). We investigated three distinct stages of processing in the ventral cortical hierarchy: 

lower-level visual areas V1-3, intermediate visual areas V4t/LO, and higher-level visual 

areas IT/PHC. At each stage of processing, we tested both model classes for their ability 

to explain variance in the temporally evolving representations. This strategy allowed us to 

test what visuo-semantic object information is unaccounted for by DNNs as ventral-stream 

processing unfolds over space and time.

Methods

Stimuli

Stimuli were 92 colored images of real-world objects spanning a range of categories, 

including humans, nonhuman animals, natural objects, and manmade objects (12 human 
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body parts, 12 human faces, 12 animal bodies, 12 animal faces, 23 natural objects, and 

21 manmade objects). Objects were segmented from their backgrounds (Figure 1a) and 

presented to human participants and models on a gray background.

Visuo-semantic models

Visuo-semantic models have been described in (Jozwik et al., 2016, 2017), where further 

details can be found.

Definition of visuo-semantic models—To create visuo-semantic models, human 

observers generated feature labels (e.g., “eye”) and category labels (e.g., “animal”) for the 

92 images (Jozwik et al., 2016). The visuo-semantic models are schematically represented 

in Figure 1b and c. Feature labels were divided into colors, textures, shapes and object 

parts, while category labels were divided into subordinate categories, basic categories and 

superordinate categories. Labels were obtained in a set of two experiments. In Experiment 

1, a group of 15 human observers (mean age=26 years; 11 females) generated feature 

and category labels for the object images. Human observers were native English speakers 

and had normal or corrected-to-normal vision. In the instruction, we defined features as 

“visible elements of the shown object, including colors, textures, shapes and object parts”. 

We defined a category as “a group of objects that the shown object is an example of”. 

The instruction contained two example images, not part of the 92 object-image set, with 

feature and category descriptions. We asked human volunteers to list a minimum of five 

descriptions, both for features and for categories. The 92 images were shown, in random 

order, on a computer screen using a web-based implementation, with text boxes next to 

each image for human observers to type feature or category descriptions. We subsequently 

selected, for features and categories separately, those descriptions that were generated by at 

least three out of 15 human observers. This threshold corresponds to the number of human 

observers that, on average, mentioned a particular feature or category for a particular image. 

The threshold is relatively lenient, but it allows the inclusion of a rich set of descriptions, 

which were further pruned in Experiment 2. We subsequently removed descriptions that 

were either inconsistent with the instructions or redundant. Observers generated 212 feature 

labels and 197 category labels. These labels are the model dimensions. In Experiment 2, 

a separate group of 14 human observers (mean age=28 years; seven females) judged the 

applicability of each model dimension to each image, thereby validating the dimensions 

generated in Experiment 1, and providing, for each image, its value (present or absent) on 

each of the dimensions. Human observers were native English speakers and had normal or 

corrected-to-normal vision. During the experiment, the object images and the descriptions, 

each in random order, were shown on a computer screen using a web-based implementation. 

The object images formed a column, while the descriptions formed a row; together they 

defined a matrix with one entry, or checkbox, for each possible image-description pair. We 

asked the human observers to judge for each description, whether it correctly described 

each object image, and if so, to tick the associated checkbox. The image values on the 

validated model dimensions define the model (if agreed by at least 75% of human observers 

from Experiment 2). To increase the stability of the models during subsequent fitting, we 

iteratively merged binary vectors that were highly correlated (r > 0.9), alternately computing 

pairwise correlations between the vectors, and averaging highly-correlated vector pairs, until 
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all pairwise correlations were below threshold. The final full feature and category models 

consisted of 119 and 110 dimensions, respectively.

Construction of the visuo-semantic representational dissimilarity matrices—
To compare the models to the measured brain representations, the models and the data 

should reside in the same representational space. This motivates transforming our models 

to representational dissimilarity matrix (RDM) space. For each model dimension, we 

computed, for each pair of images, the squared difference between their values on that 

dimension. The squared difference reflects the dissimilarity between the two images in a 

pair. Given that a specific feature or category can either be present or absent in a particular 

image, image dissimilarities along a single model dimension are binary: they are zero if a 

feature or category is present or absent in both images, and one if a feature or category is 

present in one image but absent in the other. The dissimilarities were stored in an RDM, 

yielding as many RDMs as model dimensions. The full visuo-semantic model consists of 

229 RDM predictors (119 feature predictors and 110 category predictors).

Deep neural networks

CORnet-Z and CORnet-R architectures have been described in (Kubilius et al., 2018), where 

further details can be found.

Architecture and training—We used feedforward (CORnet-Z) and locally recurrent 

(CORnet-R) (Kubilius et al., 2018) models in our analyses. The architectures of the two 

DNNs are schematically represented in Figure 1b. The architecture of CORnets is inspired 

by the anatomy of monkey visual cortex. Each processing stage in the model is thought 

to correspond to a cortical visual area, so that the four model layers correspond to areas 

V1, V2, V4, and IT respectively (Kubilius et al., 2018). The output of the last model 

layer is mapped to the model’s behavioral choices using a linear decoder. We chose 

the two CORnets because they have similar architectures but one is purely feedforward 

and the other is feedforward plus locally recurrent, they are one of the best models for 

predicting visual responses in monkey and human IT (Schrimpf et al., 2018; Jozwik 

et al., 2019b,a), and their architectures are relatively simple compared to other DNNs. 

Each “visual area” in CORnet-Z (“Zero”) consists of a single convolution, followed by a 

ReLU nonlinearity and max pooling. CORnet-R (“Recurrent”) introduces local recurrent 

dynamics within an area. The recurrence occurs only within an area; there are no bypass or 

feedback connections between areas. For each area, the input is down-scaled twofold and 

the number of channels is increased twofold by passing the input through a convolution, 

followed by group normalization (Wu and He, 2018) and a ReLU nonlinearity. The area’s 

internal state (initially zero) is added to the result and passed through another convolution, 

again followed by group normalization and a ReLU nonlinearity, resulting in the new 

internal state of the area. At time step “t0” there is no input to “V2” and beyond, and 

as a consequence no image-elicited activity is present beyond “V1”. From time step “t1” 

onwards, the image-elicited activity is present in all “visual areas” as the output of the 

previous area is immediately propagated forward. CORnet-R was trained using five time 

steps (“t0” -“t4”). Both DNNs were trained on 1.2 million images from the 2012 ILSVRC 

data base (Russakovsky et al., 2015). The ILSVRC data base provides annotations that 
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contain a category label for each image, assigning the object in an image to one out of 1,000 

categories, e.g., “daisy”, “macaque”, and “speedboat”. The networks’ task is to classify each 

object image into one of the 1,000 categories.

Construction of the DNN representational dissimilarity matrices—DNN 

representations of the 92 images were computed from the layer activations of CORnet-Z 

and CORnet-R. For CORnet-Z, we included the decoder layer and the final processing stage 

(output) from each “visual area” layer, which resulted in five layers. For CORnet-R, we 

included the decoder layer and the final processing stage from each “visual area” layer for 

each time step, which resulted in 21 layers. For each layer of CORnet-Z and CORnet-R, 

we extracted the unit activations in response to the images and converted these into one 

activation vector per image. For each pair of images, we computed the dissimilarity (1 minus 

Spearman’s correlation) between the activation vectors. This yielded an RDM for each DNN 

layer. The resulting RDMs capture which stimulus information is emphasized and which is 

de-emphasized by the DNNs at different stages of processing.

MEG source-reconstructed data

Acquisition and analysis of the MEG data have been described in (Cichy et al., 2014), where 

further details can be found. The source reconstruction of the MEG data has been described 

in (Kietzmann et al., 2019b), where further details can be found.

Participants—Sixteen healthy human volunteers participated in the MEG experiment 

(mean age = 26, 10 females). MEG source reconstruction analyses were performed for 

a subset of 15 participants for whom structural and functional MRI data were acquired. 

Participants had normal or corrected-to-normal vision. Before scanning, the participants 

received information about the procedure of the experiment and gave their written informed 

consent for participating. The experiment was conducted in accordance with the Ethics 

Committee of the Massachusetts Institute of Technology Institutional Review Board and the 

Declaration of Helsinki.

Experimental design and task—Stimuli were presented at the center of the screen for 

500 ms, while participants performed a paper clip detection task. Stimuli were overlaid 

with a light gray fixation cross and displayed at a width of 2.9° visual angle. Participants 

completed 10 to 14 runs. Each image was presented twice in every run in random order. 

Participants were asked to press a button and blink their eyes in response to a paper clip 

image shown randomly every 3 to 5 trials. These trials were excluded from further analyses. 

Each participant completed two MEG sessions.

MEG data acquisition and preprocessing—MEG signals were acquired from 306 

channels (204 planar gradiometers, 102 magnetometers) using an Elekta Neuromag TRIUX 

system (Elekta) at a sampling rate of 1,000 Hz. The data were bandpass filtered between 

0.03 and 330 Hz, cleaned using spatiotemporal filtering, and down-sampled to 500 Hz. 

Baseline correction was performed using a time window of 100 ms before stimulus onset.
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MEG source reconstruction—The source reconstructions were performed using the 

MNE Python toolbox (Gramfort, 2013). We used participant individual structural T1 scans 

to obtain volume conduction estimates using single layer boundary element models (BEMs) 

based on the inner skull boundary. Instead of BEMs being based on the FreeSurfer 

watershed algorithm originally used in the MNE Python toolbox, we extracted BEMs using 

FieldTrip as the original method yielded poor reconstruction results. The source space 

consisted of 10,242 source points per hemisphere. The source points were positioned along 

the gray/white matter boundary, as estimated via FreeSurfer. We defined source orientations 

as surface normals with a loose orientation constraint. We used an iterative closest point 

procedure for MEG/MRI alignment based on fiducials and digitizer points along the head 

surface, after initial alignment based on fiducials. We estimated the sensor noise covariance 

matrix from the baseline period (100 ms to 0 ms before stimulus onset) and regularized 

it according to the Ledoit–Wolf procedure (Ledoit and Wolf, 2004). We projected source 

activations onto the surface normal, obtaining one activation estimate per point in source 

space and time. Source reconstruction allowed us to estimate temporal dynamics in specific 

brain regions. Source reconstruction provides an estimate of what brain regions the signal is 

coming from rather than a direct measurement of representations in different brain regions 

(see (Hauk et al., 2022) for a discussion).

Definition of regions of interest—We used a multimodal brain atlas (Glasser et al., 

2016) to define regions of interest (ROIs). We defined three ROIs covering lower-level (V1–

3), intermediate (V4t/LO1–3), and higher-level visual areas (IT/PHC, consisting of TE1-2p, 

FFC, VVC, VMV2–3, PHA1–3). We converted the atlas annotation files to fsaverage 

coordinates (Fischl et al., 1999) and mapped them to each participant using spherical 

averaging.

Construction of the MEG representational dissimilarity matrices—We computed 

temporally changing RDM movies from the source-reconstructed MEG data for each 

participant, ROI, hemisphere, and session. We first extracted a trial-average multivariate 

source time series for each stimulus. We then computed an RDM at each time point 

by estimating the pattern distance between all pairs of images using correlation distance 

(1 minus Pearson correlation). The RDM movies were averaged across hemispheres and 

sessions, resulting in one RDM movie for each participant and ROI.

Evaluating and comparing model performance

To assess performance of the models at explaining variance in the source-reconstructed 

MEG data, we performed first- and second-level model fitting as described below. Model 

fitting within the RSA framework has been described in (Khaligh-Razavi and Kriegeskorte, 

2014; Jozwik et al., 2016, 2017; Storrs et al., 2020a; Kaniuth and Hebart, 2021; Kietzmann 

et al., 2019b), where further details can be found.

First-level model fitting: obtaining cross-validated model predictions—We 

could predict the brain representations by making the assumption that each model 

dimension, i.e. each visuo-semantic object label or each DNN layer, contributes equally 

to the representation. Our visuo-semantic models use the squared Euclidean distance 
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as the representational dissimilarity measure, which is the sum across dimensions of 

the squared response difference for a given pair of stimuli. The squared differences 

simply sum across dimensions, so the model prediction would be the sum of the single-

dimension model RDMs. A similar reasoning applies to our DNN model, which uses the 

correlation distance as the representational dissimilarity measure. The correlation distance 

is proportional to the squared Euclidean distance between normalized patterns. However, 

we expect that not all model dimensions contribute equally to brain representations. 

To improve model performance, we linearly combined the different model dimensions 

to yield an object representation that best predicts the source-reconstructed MEG data. 

Because the squared differences sum across dimensions in the squared Euclidean distance, 

weighting the dimensions and computing the RDM is equivalent to a weighted sum of the 

single-dimension RDMs. When a dimension is multiplied by weight w, then the squared 

differences along that dimension are multiplied by w2. We can therefore perform the fitting 

on the RDMs. We performed model fitting for the DNN model (26 predictors), the visuo-

semantic model (229 predictors), and for the following visuo-semantic submodels: color 

(10 predictors), texture (12 predictors), shape (15 predictors), object parts (82 predictors), 

subordinate categories (38 predictors), basic categories (67 predictors), and superordinate 

categories (5 predictors). We included a constant term in each model to account for 

homogeneous changes in dissimilarity across the whole RDM. For each model, we estimated 

the model weights using regularized (L2) linear regression, implemented in MATLAB using 

Glmnet (https://hastie.su.domains/glmnet_matlab/?). We standardized the predictors before 

fitting and constrained the weights to be nonnegative. To prevent biased model predictions 

due to overfitting to the images, model predictions were estimated by cross validation to a 

subset of the images held out during fitting. For each cross validation fold, we randomly 

selected 84 of the 92 images as the training set and eight images as the test set, with the 

constraint that test images had to contain four animate objects (two faces and two body 

parts) and four inanimate objects. We used the pairwise dissimilarities of the training images 

to estimate the model weights. The model weights were then used to predict the pairwise 

dissimilarities of the eight held-out images. This procedure was repeated many times until 

predictions were obtained for all pairwise dissimilarities. For each cross validation fold, we 

determined the best regularization parameter (i.e. the one with the minimum squared error 

between prediction and data) using nested cross validation to held-out images within the 

training set. We performed the first-level fitting procedure for each participant, ROI, and 

time point.

Second-level model fitting: estimating model performance—We estimated model 

performance using a second-level general linear model (GLM) approach. We used the 

cross-validated RDM predictions from the first-level model fitting as GLM predictors. We 

included a constant term in the GLM to account for homogeneous changes in dissimilarity 

across the whole RDM. We fit the GLM predictors to the source-reconstructed MEG data 

using nonnegative least squares. We first estimated the variance explained by each individual 

model when fit in isolation (reduced GLM). We next estimated the variance explained by the 

visuo-semantic and DNN models when fit simultaneously (full GLM). We then computed 

the unique variance explained by each model by subtracting the variance explained by the 

reduced GLMs from the variance explained by the full GLM. For example, to compute 
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the unique variance explained by the visuo-semantic model, we subtracted the variance 

explained by the DNN model from the variance explained by the full GLM. This approach 

allowed us to address whether visuo-semantic models capture representational features in 

ventral-stream dynamics that DNNs fail to account for, and vice versa. We also estimated 

the unique variance explained in the source-reconstructed MEG data for visuo-semantic 

submodels in the presence of the DNN model, again by fitting a full GLM (all models 

included) and a reduced GLM (excluding the model of interest). We performed the second-

level GLM fitting procedure for each participant, ROI, and time point.

Statistical inference on model performance—To evaluate the significance of the 

(unique) variance explained by each model across participants, we first subtracted an 

estimate of the prestimulus baseline in each participant and then performed a one-sided 

Wilcoxon signed-rank test against 0. The prestimulus baseline was defined as the average 

(unique) variance explained between 200 -0 ms before stimulus onset. We also tested if and 

when the (unique) variance explained differed between the visuo-semantic and DNN models 

using a two-sided Wilcoxon signed-rank test. We controlled the expected false discovery rate 

at 0.05 across time points for each model evaluation, model comparison, and ROI. We used 

a continuity criterion (minimally 10 consecutive significant time points sampled every 2 ms 

= 20 ms) to report significant time points in the manuscript text. For completeness, Figures 

2 and 3 show significant time points both before and after applying the continuity criterion. 

Lines shown in Figures 2 and 3 were low-pass filtered at 80 Hz (Butterworth IIR filter; order 

6) for better visibility. Statistical inference is based on unsmoothed data.

Results

DNNs better explain lower-level visual representations, visuo-semantic models better 
explain higher-level visual representations

We first evaluated the overall ability of the DNN and visuo-semantic models to explain 

the time course of information processing along the human ventral visual stream. We 

hypothesized that visuo-semantic models capture representational features in neural data 

that DNNs may fail to account for. Figure 1 shows an overview of our approach. We 

computed RDM movies from the source-reconstructed MEG data to characterize how the 

ventral-stream object representations evolved over time in each participant. We computed 

a RDM movie for each participant and ROI and explained variance in the movies using 

a DNN model and a visuo-semantic model. The DNN model consisted of internal object 

representations in layers of CORnet-Z, a purely feedforward model, and CORnet-R, a 

locally recurrent variant (Kubilius et al., 2018), to account for both feedforward and 

locally recurrent computations. The visuo-semantic model consisted of human-generated 

labels of object features (e.g., “brown”, “furry”, “round”, “ear”; 119 labels) and categories 

(e.g., “great dane”, “dog”, “organism”; 110 labels) for the object images presented during 

the MEG experiment (Jozwik et al., 2016). We computed model predictions by linearly 

combining either all DNN layers or all visuo-semantic labels to best explain variance in the 

RDM movies across time. We evaluated the model predictions on data for images left out 

during fitting. For each model, we tested if and when the variance explained in the RDM 

movies exceeded the prestimulus baseline using a one-sided Wilcoxon signed-rank test. We 
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also tested if and when the amounts of explained variance differed between the two models 

using a two-sided Wilcoxon signed-rank test. We controlled the expected false discovery rate 

at 0.05 across time points. We applied a continuity criterion (20 ms) for reporting results in 

the text.

For lower-level visual cortex (V1-3), the DNN model explained significant amounts of 

variance between 60 and 638, and 818 and 884 ms after stimulus onset, while the visuo-

semantic model did so between 118 and 660 ms after stimulus onset (118 - 142 ms, 146 - 

178 ms, 194 - 256 ms, 264 - 414 ms, 430 - 458 ms, 486 - 520 ms, 570 - 598 ms, 608 - 660 

ms, Figure 2a). The DNN model explained more variance than the visuo-semantic model 

during the early (66 - 128 ms) as well as the late (422 - 516 ms, 520 - 544 ms, 820 - 844 ms) 

phases of the response. For intermediate visual cortex (V4t/LO), the DNN model explained 

variance predominantly between 62 and 610 ms after stimulus onset (62 - 562 ms, 590 - 610 

ms, 820 - 848 ms, 854 - 874 ms, 952 - 976 ms), while the visuo-semantic model explained 

variance predominantly between 110 and 562 ms after stimulus onset (110 - 478 ms, 482 - 

562 ms, 832 - 854 ms, Figure 2a). The amount of explained variance did not significantly 

differ between the two models. The results for lower-level visual cortex indicate that the 

DNN model outperformed the visuo-semantic model at explaining object representations, 

during the early phase of the response (< 128 ms after stimulus onset), as well as the late 

phase of the response (> 422 ms after stimulus onset). In contrast, for higher-level visual 

cortex (IT/PHC), the visuo-semantic model outperformed the DNN model. The DNN model 

explained variance only between 182 and 270 ms after stimulus onset (Figure 2a). The 

visuo-semantic model explained variance during a longer time window, between 96 and 658 

ms after stimulus onset (96 - 464 ms, 468 - 500 ms, 542 - 578 ms, 606 - 658 ms, Figure 

2a). Furthermore, the visuo-semantic model explained more variance than the DNN model 

between 146 and 488 ms after stimulus onset (specifically 146 - 188 ms, 196 - 234 ms, 326 

- 344 ms, 348 - 402 ms, 412 - 464 ms, 468 - 488 ms). In summary, the results across the 

ventral stream regions show a reversal in which model best explains variance in the RDM 

movies, from the DNN model in lower-level visual cortex, starting at 66 ms after stimulus 

onset, to the visuo-semantic model in higher-level visual cortex, starting at 146 ms after 

stimulus onset.

Visuo-semantic models explain unique variance in higher-level visual representations

Our results suggest that DNNs and visuo-semantic models explain complementary 

components of human ventral-stream representational dynamics. To explicitly test this 

hypothesis, we assessed the unique contributions of the two models. For this, we first 

computed the best RDM predictions for each model class, and then used the resulting cross-

validated RDM predictions in a second-level GLM in which we combined the two model 

classes. We computed the unique contribution of a model class by subtracting the variance 

explained by the reduced model (i.e. the GLM without the model class of interest) from the 

variance explained by the full model (including both model classes). For lower-level visual 

cortex (V1-3), the DNN model explained unique variance between 60 and 638, and 818 and 

884 ms after stimulus onset, while the visuo-semantic model did so between 124 and 654 

ms after stimulus onset (124 - 142 ms, 148 - 170 ms, 228 - 246 ms, 298 - 364 ms, 368 - 

412 ms, 612 - 654 ms, Figure 2b). For intermediate visual cortex (V4t/LO), the DNN model 
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explained unique variance predominantly between 62 and 610 ms after stimulus onset (62 - 

558 ms, 590 - 610 ms, 820 - 848 ms, 952 - 976 ms), while the visuo-semantic model did so 

predominantly between 118 and 546 ms after stimulus onset (118 - 478 ms, 490 - 546 ms, 

832 - 854 ms, Figure 2b). These results indicate that the DNN and visuo-semantic models 

each explained a significant amount of unique variance in lower-level and intermediate 

visual cortex compared to the baseline period. However, for lower-level visual cortex, the 

DNN model explained more unique variance than the visuo-semantic model during the 

early (66 - 128 ms) as well as the late phases of the response (422 - 516 ms, 520 - 

544 ms, 820 - 844 ms). For intermediate visual cortex, the unique variance explained did 

not significantly differ between the two models. For higher-level visual cortex (IT/PHC), 

only the visuo-semantic model explained unique variance, between 104 and 640 ms after 

stimulus onset (specifically 104 - 464 ms, 468 - 500 ms, 542 - 578 ms, and 608 - 640 

ms). Furthermore, the visuo-semantic model explained significantly more unique variance 

than the DNN model between 146 and 488 ms after stimulus onset (specifically 146 - 188 

ms, 196 - 234 ms, 326 - 344 ms, 348 - 402 ms, 412 - 464 ms, 468 - 488 ms, Figure 

2b). These results indicate that, in the context of a visuo-semantic predictor, the tested 

DNNs explain unique variance at lower-level but not higher-level stages of visual processing 

which instead show a unique contribution of visuo-semantic models. Visuo-semantic models 

appear to explain components of the higher-level visual representations that DNNs fail to 

fully capture, starting at 146 ms after stimulus onset.

Object parts and basic categories contribute to the unique variance explained by visuo-
semantic models in higher-level visual representations

To better understand which components of the visuo-semantic model contribute to 

explaining unique variance in the higher-level visual representations, we repeated our 

analyses separately for subsets of object features and subsets of categories. We grouped 

the visuo-semantic labels into the following subsets: color, texture, shape, and object parts, 

and subordinate, basic, and superordinate categories (Figure 1b). The dimensionality of the 

submodels was naturally smaller than that of the full visuo-semantic model, which consisted 

of 229 object labels. The number of dimensions for the submodels was as follows: color 

(10), texture (12), shape (15), object parts (82), subordinate categories (38), basic categories 

(67), superordinate categories (5). Some of the submodels explained a similar amount of 

variance as the full visuo-semantic model (Figure 3a,b), which indicates that including fewer 

dimensions did not necessarily reduce model performance. A more in-depth understanding 

of the relationship between model dimensionality and performance remains an important 

objective for future study. Here we found that, among the object features, only object parts 

explained variance in higher-level visual cortex (IT/PHC) (Figure 3a). Furthermore, object 

parts explained unique variance in higher-level visual cortex, while the DNN model did not 

(Figure 3b). Among the categories, subordinate and basic categories explained variance in 

higher-level visual cortex (Figure 3a). Furthermore, each of these models explained unique 

variance in higher-level visual cortex, while the DNN model did not (Figure 3b). We next 

evaluated the three best predictors among the object features and categories together in the 

context of the DNN predictor. While object parts, subordinate categories, basic categories, 

and DNNs all explained variance in higher-level visual cortex, only object parts and basic 

categories explained unique variance (Figure 3b).
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Discussion

Neural representations of visual objects dynamically unfold over time as we are making 

sense of the visual world around us. These representational dynamics are thought to 

reflect the cortical computations that support human object recognition. Here we show 

that DNNs and human-derived visuo-semantic models explain complementary components 

of representational dynamics in the human ventral visual stream, estimated via source-

reconstructed MEG data. We report a gradual reversal in the importance of DNN and visuo-

semantic features from lower- to higher-level visual areas. DNN features explain variance 

over and above visuo-semantic features in lower-level visual areas V1-3 starting early in 

time (at 66 ms after stimulus onset). In contrast, visuo-semantic features explain variance 

over and above DNN features in higher-level visual areas IT/PHC starting later in time (at 

146 ms after stimulus onset). Among the visuo-semantic features, object parts and basic 

categories drive the advantage over DNNs. Our results suggests that a significant component 

of the variance unexplained by DNNs in higher-level visual areas is structured, and can be 

explained by relatively simple, readily nameable aspects of the images. Figure 4 shows a 

visual summary of our results. Consistent with our hypothesis, our findings suggest that 

current DNNs fail to fully capture the visuo-semantic features represented in higher-level 

human visual cortex, and suggest a path towards more accurate models of ventral stream 

computations.

Our finding that DNNs outperform visuo-semantic models at explaining lower-level cortical 

dynamics replicates and extends prior fMRI work, which showed that DNNs explain 

response variance across all stages of the ventral stream while visuo-semantic models 

predominantly explain response variance in higher-level visual cortex (Khaligh-Razavi and 

Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Huth et al., 2012; Jozwik et al., 2018; 

Devereux et al., 2018). Using source-reconstructed MEG data, we show that the advantage 

of DNNs over visuo-semantic models in V1-3 emerges early in time, starting within 70 

ms after stimulus onset. The early advantage lasts for approximately 60 ms. During this 

early time window, the response is likely dominated by feedforward and local recurrent 

processing as opposed to top-down feedback signals from higher-level areas (Isik et al., 

2014; Kietzmann et al., 2019a). DNNs also outperform visuo-semantic models in V1-3 

late in time, starting around 420 ms after stimulus onset. The late advantage lasts for 

approximately 120 ms. Prior analysis of the same source-reconstructed MEG data showed 

a relative increase in the explanatory power of lower-level visual features (GIST model) 

(Oliva and Torralba) and interspecies face clustering in V1-3 during this late time window 

(Kietzmann et al., 2019b). These effects were observed in the presence of a slightly 

elevated noise ceiling. During the late time window, the response may reflect an interplay 

between bottom-up stimulus processing and top-down feedback signals. Our results show 

the importance of analyzing temporally resolved neuroimaging data for revealing when in 

time competing models account for the rapid dynamic unfolding of human ventral-stream 

representations.

Our findings show that DNNs, despite reaching human-level performance on large-scale 

object recognition tasks (Schrimpf et al., 2018), fail to fully capture visuo-semantic 

features represented in higher-level human visual cortex, in particular object parts and 
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basic categories. Higher-level visual representations in dynamic MEG data instead more 

closely resemble human perceptual judgements of object properties. In line with our 

results, prior fMRI work showed that DNNs only adequately accounted for higher-level 

visual representations after adding new representational features (Khaligh-Razavi and 

Kriegeskorte, 2014; Devereux et al., 2018; Storrs et al., 2020a,b). The new features 

were either explicit semantic features (Devereux et al., 2018) or were created by linearly 

combining DNN features to emphasize categorical divisions observed in the higher-level 

visual representations, including the division between faces and nonfaces and between 

animate and inanimate objects (Khaligh-Razavi and Kriegeskorte, 2014; Storrs et al., 

2020a). Our results show that visuo-semantic models start outperforming DNNs in higher-

level visual areas around 150 ms after stimulus onset. This timeline coincides with the 

emergence of animate clustering in these areas (Kietzmann et al., 2019b) as well as with the 

emergence of conceptual object representations as reported in prior MEG work (Bankson 

et al., 2018). Our results are also consistent with an earlier MEG study which showed that 

adding semantic features to a simpler HMAX model was beneficial for modeling object 

representations in visual cortex starting around 200 ms after stimulus onset (Clarke et al., 

2015). DNNs may, at least in part, use different object features for object recognition than 

humans do. This conclusion is consistent with prior reports that DNNs rely more strongly on 

lower-level image features such as texture for object categorization (Geirhos et al., 2019).

While we refer to both DNNs and visuo-semantic object labels as ’models’, there are 

substantial differences between the two. DNNs are image-computable, which means that 

they can compute a representation for any image. In contrast, visuo-semantic object 

labels are generated by human observers. How the human brain computes these labels 

remains unknown. This can be considered a disadvantage relative to DNNs, which are 

computationally explicit, i.e. we have full knowledge of their computational units and of the 

transformations applied to the image at each processing stage. However, it is challenging 

to pinpoint what these processing stages represent and how they may differ from those 

in humans. Visuo-semantic object labels, on the other hand, are easy to interpret. By 

comparing DNNs and visuo-semantic models in their ability to capture human ventral-

stream representational dynamics, we can identify features in the data that DNNs fail to 

account for and use outcomes to guide model improvement.

Our results can be considered consistent with theories that propose an integral role for 

feedback in visual perception (Rao and Ballard, 1999; Bar, 2003; Ahissar and Hochstein, 

2004). As summarized in Figure 4, within the first 120 ms of stimulus processing, we 

observe a peak in the relative contribution of DNNs in lower-level and intermediate 

visual cortex, followed by a peak in the relative contribution of visuo-semantic models in 

higher-level visual cortex. These peaks may reflect a feedforward sweep of initial stimulus 

processing, which is thought to support perception of the gist of the visual scene and 

initial analysis of category information (Oliva and Torralba; Lowe et al., 2018; Kirchner 

and Thorpe, 2006; Liu et al., 2009). The initial peaks are followed by a visuo-semantic 

peak in intermediate visual cortex around 150 ms after stimulus onset, which appears after 

a period of possible feedback information flow from higher-level to intermediate visual 

cortex (Kietzmann et al., 2019b), and additional fluctuations in relative model performance 

as time unfolds. These fluctuations include a re-appearance of the advantage of DNNs over 
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visuo-semantic models in lower-level visual cortex around 420 ms after stimulus onset. 

The observed sequence of events is consistent with the reverse hierarchy theory of visual 

perception, which proposes an initial feedforward analysis for vision at a glance followed by 

explicit feedback signalling for vision with scrutiny (Ahissar and Hochstein, 2004). Future 

research should study visual perception under challenging viewing conditions, including 

occlusion and clutter, which are expected to strongly engage feedback signals and recurrent 

computation (Lamme and Roelfsema, 2000; O’Reilly et al., 2013; Spoerer et al., 2017; Tang 

et al., 2018; Kar et al., 2019; Rajaei et al., 2019; Kietzmann et al., 2019a).

Our study makes several important contributions to the existing body of work on modeling 

ventral-stream computations with DNNs. First, our results suggest that introducing locally 

recurrent connections to DNNs, to more closely match the architecture of the ventral visual 

stream, is not sufficient to fully capture the representational dynamics observed in higher-

level human visual cortex. Second, our results tie together space and time through analysis 

of source-reconstructed MEG data. We show that DNNs outperform visuo-semantic models 

in lower-level visual areas V1-3 starting at 66 ms after image onset, while visuo-semantic 

models outperform DNNs in higher-level visual areas IT/PHC starting at 146 ms after 

image onset. Third, we show that a significant component of the unexplained variance 

in higher-level cortical dynamics is structured, and can be explained by readily nameable 

aspects of object images, specifically object parts and basic categories. In prior behavioral 

work using the same image set and visuo-semantic labels, we showed that category labels, 

but not object parts, outperformed DNNs at explaining object similarity judgements (Jozwik 

et al., 2017). These results suggest that, compared to responses in ventral visual cortex, 

behavioral similarity judgements may more strongly emphasize semantic object information 

(Mur et al., 2013; Jozwik et al., 2017; Groen et al., 2018). Future studies should extend this 

work to richer stimulus and model sets.

To build more accurate models of human ventral stream computations, we need to 

provide DNNs with a more human-like learning experience. Two important areas for 

improvement are visual diet and learning objectives. Each of these shapes the internal object 

representations that develop during visual learning. Humans have a rich visual diet and 

learn to distinguish between ecologically relevant categories at multiple levels of abstraction, 

including faces, humans, and animals (Mur et al., 2013; Jozwik et al., 2016). DNNs have a 

more constrained visual diet and are trained on category divisions that do not entirely match 

the ones that humans learn in the real world. For example, the most common large-scale 

image dataset for training DNNs with category supervision (Russakovsky et al., 2015; 

Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Cichy et al., 2017; 

Kubilius et al., 2018; Schrimpf et al., 2018; Jozwik et al., 2019b; Storrs et al., 2020a,b), 

the ILSVRC 2012 dataset (Russakovsky et al., 2015), contains subordinate categories that 

most humans would not be able to distinguish, including dog breeds such as “schipperke” 

and “groenendael”, and lacks some higher-level categories relevant to humans, including 

“face” and “animal”. The path forward is unfolding along two main directions. The first 

is enrichment of the visual diet of DNNs by better matching the visual variability present 

in the real world, for example by increasing variability in viewpoint or by training on 

videos instead of static images (Barbu et al., 2019; Zhuang et al., 2019). The second is to 

more closely match human learning objectives, for example by introducing more human-like 
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category objectives or unsupervised objectives (Mehrer et al., 2021; Higgins et al., 2020; 

Zhuang et al., 2021; Konkle and Alvarez, 2020). Training DNNs on more human-like visual 

diets and learning objectives may give rise to representational features that more closely 

match the visuo-semantic features represented in human higher-level visual cortex.
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Significance Statement

When we view objects such as faces and cars in our visual environment, their neural 

representations dynamically unfold over time at a millisecond scale. These dynamics 

reflect the cortical computations that support fast and robust object recognition. Deep 

neural networks (DNNs) have emerged as a promising framework for modeling 

these computations but cannot yet fully account for the neural dynamics. Using 

magnetoencephalography data acquired in human observers during object viewing, we 

show that readily nameable aspects of objects, such as “eye”, “wheel”, and “face”, can 

account for variance in the neural dynamics over and above DNNs. These findings 

suggest that DNNs and humans may in part rely on different object features for visual 

recognition and provide guidelines for model improvement.
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Fig. 1. Schematic overview of approach: stimulus set, models, data, and model fitting.
a) Stimulus set. Stimuli are 92 colored images of real-world objects spanning a range of 

categories, including humans, nonhuman animals, natural objects, and manmade objects. b) 
Visuo-semantic models and deep neural networks (DNNs). Visuo-semantic models consist 

of human-generated labels of object features and categories for the 92 images. Example 

labels are shown for the dog face encircled in panel (a). DNNs are feedforward and 

locally recurrent CORnet architectures trained with category supervision on the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) data base. These architectures are 
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inspired by the processing stages of the primate ventral visual stream: from V1 to inferior 

temporal cortex (IT). c) Object representations for each model. We characterized object 

representations by computing representational dissimilarity matrices (RDMs). We computed 

one RDM per model dimension, i.e. one for each visuo-semantic label or DNN layer. For 

each visuo-semantic model dimension, RDMs were computed by extracting the value for 

each image on that dimension and computing pairwise dissimilarities (squared difference) 

between the values. For each CORnet-Z and CORnet-R layer, RDMs were computed by 

extracting an activity pattern across model units for each image and computing pairwise 

dissimilarities (1 minus Spearman’s r) between the activity patterns. d) Human source-

reconstructed MEG data for an example participant. MEG data were acquired in 15 healthy 

adult human participants while they were viewing the 92 images (stimulus duration: 500 

ms). We analyzed source-reconstructed data from three regions of interest (ROIs): V1-3, 

V4t/LO, and IT/PHC. We computed an RDM for each participant, region, and time point. 

RDMs were computed by extracting an activity pattern for each image and computing 

pairwise dissimilarities (1 minus Pearson’s r) between the activity patterns. e) Schematic 

overview of model fitting procedure. We tested two model classes: a visuo-semantic model 

consisting of all category and feature RDMs and a DNN model consisting of all CORnet-Z 

and CORnet-R layer RDMs. The respective model RDMs serve as predictors. We fitted 

the two models to the MEG RDMs for each participant, region, and time point, using 

cross-validated non-negative least squares regression.
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Fig. 2. Deep neural networks (DNNs) better explain lower-level visual representations, visuo-
semantic models better explain higher-level visual representations.
a) Variance explained by the DNNs (green) and visuo-semantic models (blue) in the source-

reconstructed MEG data. For each model class, we fit the model predictors to the data 

using nonnegative least squares regression. Variance explained was computed as the variance 

explained by the model predictions in data for images left out during fitting. Significant 

variance explained is indicated by green and blue points above the graph (one-sided 

Wilcoxon signed-rank test, p < 0.05 corrected). Significant differences between models 

in variance explained are indicated by grey points above the graph (two-sided Wilcoxon 

signed-rank test, p < 0.05 corrected). Lighter colors indicate individually significant time 

points, and darker colors indicate time points that additionally satisfy a continuity criterion 

(minimally 20 ms of consecutive significant time points). The shaded area around the 

lines shows the standard error of the mean across participants. The x axis shows time 

relative to stimulus onset. The gray horizontal bar on the x axis indicates the stimulus 

duration. b) Unique variance explained by the DNNs and visuo-semantic models in the 

source-reconstructed MEG data. To estimate the unique variance explained by each model 

class, we used a second-level general linear model (GLM) and fit the cross-validated model 

predictions to the data using nonnegative least squares. Unique variance explained was 

computed by subtracting the variance explained by the reduced GLM (excluding the model 

class of interest) from the total variance explained by the full GLM (including both model 

classes). Conventions are the same as in panel a.
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Fig. 3. Object parts and basic categories contribute to the unique variance explained by visuo-
semantic models in higher-level visual representations.
a) Variance explained by the object features (color, texture, shape, object parts), categories 

(subordinate, basic, superordinate), and deep neural networks in the source-reconstructed 

MEG data. Conventions are the same as in Figure 2a. b) Unique variance explained by the 

object features, categories, and deep neural networks in the source-reconstructed MEG data. 

Conventions are the same as in Figure 2b.
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Fig. 4. Deep neural networks (DNNs) and visuo-semantic models explain complementary 
components of human ventral-stream representational dynamics.
To summarize our findings, we computed a model difference score based on the results 

shown in Figure 2b. We subtracted the unique variance explained by the visuosemantic 

models from that explained by the DNNs in the dynamic ventral-stream representations. 

Difference scores are shown for each ROI during the first 600 ms of stimulus processing. 

Results show a gradual reversal in the relative importance of DNN versus visuo-semantic 

features in explaining the visual representations as they unfold over space and time. Between 

66 and 128 ms after stimulus onset, DNNs outperform visuo-semantic models in lower-

level areas V1-3 (grey line, positive deflection). This early time window is thought to 

be dominated by feedforward and local recurrent processing. In contrast, starting 146 ms 

after stimulus onset, visuo-semantic models outperform DNNs in higher-level visual areas 

IT/PHC (red line, negative deflection). The same pattern of complementary contributions of 

DNNs and visuo-semantic models seems to re-appear during the late phase of the response, 

starting around 400 ms after stimulus onset, when responses may reflect interactions 

between visual areas. These results show that DNNs fail to account for a significant 

component of variance in higher-level cortical dynamics, which is instead accounted for 

by visuo-semantic features, in particular object parts and basic categories. The peak of 

visuo-semantic model performance in higher-level areas (red vertical line) precedes the peak 

in intermediate areas (blue vertical line). This sequence of events aligns with the timing 

of possible feedback information flow from higher-level to intermediate areas (light grey 

rectangle and arrow) as reported in(Kietzmann et al., 2019b). The shaded area around the 

lines shows the standard error of the mean across participants.
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