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Bowers et al. (2022) propose to use controlled behavioral experiments when evaluating 

deep neural networks as models of biological vision. We agree with the sentiment and draw 

parallels to the notion that “neuroscience needs behavior”. As a promising path forward, 

we suggest complementing image recognition tasks with increasingly realistic and well-

controlled task environments that engage real-world object recognition behavior. 
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Bowers et al. describe the importance of targeted behavioral experiments when 

evaluating deep neural networks as models of biological vision. We agree with the sentiment and 

draw parallels to the notion that “neuroscience needs behavior” (Krakauer et al., 2017). A major 

point raised by Bowers et al. is that one system – a neural network – can provide an excellent 

prediction of another system – the visual system – while relying on entirely different 

mechanisms. Carefully designed behavioral experiments are needed to assess how good the 

match really is. This point echoes the historic multiple realizability argument highlighted by 

Krakauer et al., which states that different (neural) mechanisms can solve the same 

computational problem. Krakauer and colleagues proposed the same solution: carefully designed 

behavioral experiments, to generate and test hypotheses about the neural mechanisms that give 

rise to behavior. In essence, neuroscience and modeling both need behavior to guide hypothesis 

testing and theory development in their endeavor to understand how the brain works.  

 What types of behavioral experiments are best suited to evaluate deep neural networks as 

models of biological vision? As suggestions for the modeling community, we take inspiration 

from solutions pioneered by neuroscience in recent years (e.g., Snow & Culham, 2021). There is 

growing realization that real-world object recognition engages distinct neural responses 

compared to the behaviors involved with standard image recognition tasks. In the traditional 

experiment, observers respond with button presses to images displayed on a computer monitor as 

brain activity is recorded. This approach has provided important insights on biological vision and 

has served as a great starting point for model evaluation (e.g., Jozwik et al. 2023). However, 
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traditional experiments do not fully capture how humans interact with objects in real-world 

environments. 

 We suggest that our experiments should increasingly mimic real-world behavior, by: 1) 

including tasks beyond image recognition when evaluating deep neural networks, and 2) 

developing platforms that enable simulation of realistic task environments. Using these 

environments, both humans and models can be subjected to a wide range of real-world 

behavioral tasks such as object tracking (e.g., following a moving animal) or visual search (e.g., 

finding objects in cluttered scenes); also see Peters & Kriegeskorte (2021) for discussions. The 

researcher will be offered a level of control that supports carefully designed experiments while 

maintaining ecological validity. The proposed platforms are now within reach thanks to advances 

in virtual reality and 3D computer graphics, which are yielding powerful game engines 

accessible to psychologists and modelers alike. Promising recent approaches have extended the 

Unity game engine to the design of psychology experiments (e.g., Alsbury-Nealy et al., 2022; 

Brookes et al., 2020; Peters et al., 2022; Starrett et al., 2021) and the simulation of interactive 

physics (e.g., ThreeDWorld; Gan et al., 2021). 

 Importantly, we suggest that the behavior in task environments should include the 

measurement of continuous dependent variables that unfold over time. Traditional cognitive 

psychology and neuroscience experiments use binary metrics such as “yes/no” or “multiple-

choice” questions with one correct option among competitors (e.g., image classification). By 

contrast, humans in the real world have evolved to complete unstructured tasks in service of 

survival-related goals. We use cognitive abilities honed through millions of years of primate 

evolution and over a decade of childhood development to navigate environments, build tools, 

find food, solve problems, and interact with other humans in cooperative and competitive 

settings. These dynamic behaviors involve head, body, and limb movements (Adolph & 

Franchak, 2017) and are based on internal decisions made from the input received from our 

sensory organs at millisecond timescales (Stanford et al., 2010). Measuring the continuous 

behavioral dynamics may allow for richer understanding compared to discrete variables that 

average over many experimental trials (Spivey, 2007; for object memory dynamics, see Li et al., 

2023; for navigation dynamics, see de Cothi et al., 2022; for “continuous psychophysics”, see 

Straub & Rothkopf, 2022). 
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 The models we build should also explain neural activity measured as humans complete 

different experimental tasks. Not only will this approach create a wealth of interdisciplinary 

opportunities, but modelers could take advantage of psychology and neuroscience theory which 

continues to make important predictions about behavior (e.g., Behrens et al., 2018; Cowell, 

Barense, & Sadil, 2019). As one example, the anterior temporal lobes are theorized to be a 

centralized “hub” region of the human brain involved in combining multiple sensory features to 

form object concepts (Lambon Ralph et al., 2017). This structure supports the formation of new 

concepts in tasks involving the combination of 3-dimensional shape and sound (Li et al., 2022). 

Furthermore, damage to the anterior temporal lobes results in predictable impairments on 

memory, perception, and learning tasks (i.e., semantic dementia; Hodges & Patterson, 2007; 

Barense et al., 2010). A complete model should be able to make novel predictions about 

behavioral and brain responses while also accounting for existing data across many tasks. 

 We have outlined concrete suggestions toward a collaborative path that we envision to be 

productive. We suggest that modelers should design realistic tasks in virtual reality, measure the 

continuous behavioral dynamics that unfold over time, and assess correspondences to brain 

activity across many tasks. However, there are also many challenges that lie ahead before these 

suggestions can be fully realized: the expertise required to span cognitive psychology and 

neuroscience in addition to computational modeling is daunting. Developing naturalistic real-

world experiments requires programming skills often not taught in psychology and neuroscience 

curriculums, whereas theoretical models important for understanding human cognition are often 

not taught in computer science. Fully characterizing the dynamics of behavior and brain activity 

will likely require theory and measurement techniques that have not yet been developed 

(Druckmann & Rust, 2023). For these reasons, we suggest an incremental, highly 

interdisciplinary and collaborative approach toward real-world experiments, which we hope will 

lead to a more complete understanding of how the human brain may support object-centered 

representations. 

 Our suggestions reemphasize the centrality of behavior – described as “psychological 

findings” by Bowers et. al – across both the development of more human-like neural networks as 

well as in the continued understanding of the human brain. 
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